YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Quasi-Two-Dimensional Model for Water Hammer Problems

    Source: Journal of Hydraulic Engineering:;2003:;Volume ( 129 ):;issue: 012
    Author:
    Ming Zhao
    ,
    Mohamed S. Ghidaoui
    DOI: 10.1061/(ASCE)0733-9429(2003)129:12(1007)
    Publisher: American Society of Civil Engineers
    Abstract: Quasi-two-dimensional models for turbulent flows in water hammer are necessary for advancing the understanding of flow behavior in pipe transient; conducting detailed investigation of the fate of transient-induced contamination; and validating one-dimensional water hammer models. An existing quasi-two dimensional numerical model for turbulent water hammer flows has the attributes of being robust, consistent with the physics of wave motion and turbulent diffusion, and free from the inconsistency associated with the enforcement of the no slip condition while neglecting the radial velocity at boundary elements, such as valves and reservoirs. However, this scheme is computationally intensive making it unsuitable for practical pipe systems or for conducting numerical experiments. This paper addresses the efficiency and stability of this existing scheme. In particular, algebraic manipulations show that the original scheme can be decoupled into two tridiagonal systems, one for piezometric head and radial flux and another for axial velocity. This decoupling is the reason for the high efficiency of the modified scheme. The original and proposed schemes are applied to a pipe–reservoir–valve system. It is found that, for the same spatial and temporal discretization, both schemes are of equal accuracy. However, significant saving in computer execution time is achieved by using the modified scheme. Application of the modified scheme to pipes of realistic dimensions and wavespeeds (length 35.2 km, diameter 200 mm, and wave speed 1000 m/s) takes only a few minutes to execute. This small execution time requirement makes the current quasi-two-dimensional model suitable for application to practical water hammer problems. The stability domain of the proposed scheme is established using the Von Neumann method.
    • Download: (89.27Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Quasi-Two-Dimensional Model for Water Hammer Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/25488
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMing Zhao
    contributor authorMohamed S. Ghidaoui
    date accessioned2017-05-08T20:44:28Z
    date available2017-05-08T20:44:28Z
    date copyrightDecember 2003
    date issued2003
    identifier other%28asce%290733-9429%282003%29129%3A12%281007%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/25488
    description abstractQuasi-two-dimensional models for turbulent flows in water hammer are necessary for advancing the understanding of flow behavior in pipe transient; conducting detailed investigation of the fate of transient-induced contamination; and validating one-dimensional water hammer models. An existing quasi-two dimensional numerical model for turbulent water hammer flows has the attributes of being robust, consistent with the physics of wave motion and turbulent diffusion, and free from the inconsistency associated with the enforcement of the no slip condition while neglecting the radial velocity at boundary elements, such as valves and reservoirs. However, this scheme is computationally intensive making it unsuitable for practical pipe systems or for conducting numerical experiments. This paper addresses the efficiency and stability of this existing scheme. In particular, algebraic manipulations show that the original scheme can be decoupled into two tridiagonal systems, one for piezometric head and radial flux and another for axial velocity. This decoupling is the reason for the high efficiency of the modified scheme. The original and proposed schemes are applied to a pipe–reservoir–valve system. It is found that, for the same spatial and temporal discretization, both schemes are of equal accuracy. However, significant saving in computer execution time is achieved by using the modified scheme. Application of the modified scheme to pipes of realistic dimensions and wavespeeds (length 35.2 km, diameter 200 mm, and wave speed 1000 m/s) takes only a few minutes to execute. This small execution time requirement makes the current quasi-two-dimensional model suitable for application to practical water hammer problems. The stability domain of the proposed scheme is established using the Von Neumann method.
    publisherAmerican Society of Civil Engineers
    titleEfficient Quasi-Two-Dimensional Model for Water Hammer Problems
    typeJournal Paper
    journal volume129
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2003)129:12(1007)
    treeJournal of Hydraulic Engineering:;2003:;Volume ( 129 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian