YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Zero-Inertia and Volume Balance Advance-Infiltration Models

    Source: Journal of Hydraulic Engineering:;2000:;Volume ( 126 ):;issue: 006
    Author:
    Mariano Guardo
    ,
    Ramchand Oad
    ,
    Terence H. Podmore, P.E.
    DOI: 10.1061/(ASCE)0733-9429(2000)126:6(457)
    Publisher: American Society of Civil Engineers
    Abstract: Results of the advance-infiltration phase from a zero-inertia model and a volume balance model in level basins are analyzed and compared. Level basin irrigation systems are traditionally more efficient than other surface irrigation systems (e.g., furrows, borders). An important factor in the design and operation of level basins is the time of advance, which is primarily a function of the inflow rate, soil infiltration parameters, and roughness coefficient. The advance-infiltration phase is determined by two well-known and also very distinct mathematical approaches. The first approach is known as the zero-inertia model, which is categorized as “simplified hydrodynamics.” The simplification consists of ignoring some of the terms in the momentum equation. The second approach is based on the volume balance model and is considered to be “kinematics” because the momentum equation is ignored. The volume balance model, despite being less complex and less mathematically demanding than the zero-inertia model, provides satisfactory predictions of the advance-infiltration phase. The Lewis-Milne equation defines, in this case, the advance-infiltration phase with the modified Kostiakov infiltration function describing the infiltration process. The obtained solution is relatively simple to program. In spite of great advances in computers that facilitate the solution of complex mathematical schemes, hydrodynamic models, even simplified versions, are infrequently used in the daily practice of engineering because of their complexity. Time steps to be used in these simulations are extremely small to guarantee good accuracy and to avoid instability in the numerical scheme. Errors in the estimation of the time of advance between the zero-inertia and volume balance models range from 3.87 to 8.44% from unit inflows ranging from 2.0 to 7.0 L/s/m. The time of advance
    • Download: (204.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Zero-Inertia and Volume Balance Advance-Infiltration Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/25048
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMariano Guardo
    contributor authorRamchand Oad
    contributor authorTerence H. Podmore, P.E.
    date accessioned2017-05-08T20:43:50Z
    date available2017-05-08T20:43:50Z
    date copyrightJune 2000
    date issued2000
    identifier other%28asce%290733-9429%282000%29126%3A6%28457%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/25048
    description abstractResults of the advance-infiltration phase from a zero-inertia model and a volume balance model in level basins are analyzed and compared. Level basin irrigation systems are traditionally more efficient than other surface irrigation systems (e.g., furrows, borders). An important factor in the design and operation of level basins is the time of advance, which is primarily a function of the inflow rate, soil infiltration parameters, and roughness coefficient. The advance-infiltration phase is determined by two well-known and also very distinct mathematical approaches. The first approach is known as the zero-inertia model, which is categorized as “simplified hydrodynamics.” The simplification consists of ignoring some of the terms in the momentum equation. The second approach is based on the volume balance model and is considered to be “kinematics” because the momentum equation is ignored. The volume balance model, despite being less complex and less mathematically demanding than the zero-inertia model, provides satisfactory predictions of the advance-infiltration phase. The Lewis-Milne equation defines, in this case, the advance-infiltration phase with the modified Kostiakov infiltration function describing the infiltration process. The obtained solution is relatively simple to program. In spite of great advances in computers that facilitate the solution of complex mathematical schemes, hydrodynamic models, even simplified versions, are infrequently used in the daily practice of engineering because of their complexity. Time steps to be used in these simulations are extremely small to guarantee good accuracy and to avoid instability in the numerical scheme. Errors in the estimation of the time of advance between the zero-inertia and volume balance models range from 3.87 to 8.44% from unit inflows ranging from 2.0 to 7.0 L/s/m. The time of advance
    publisherAmerican Society of Civil Engineers
    titleComparison of Zero-Inertia and Volume Balance Advance-Infiltration Models
    typeJournal Paper
    journal volume126
    journal issue6
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2000)126:6(457)
    treeJournal of Hydraulic Engineering:;2000:;Volume ( 126 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian