YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Godunov-Type Solution of Curvilinear Shallow-Water Equations

    Source: Journal of Hydraulic Engineering:;2000:;Volume ( 126 ):;issue: 011
    Author:
    Masayuki Fujihara
    ,
    Alistair G. L. Borthwick
    DOI: 10.1061/(ASCE)0733-9429(2000)126:11(827)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents details of a second-order accurate Godunov-type numerical model of the two-dimensional conservative hyperbolic shallow-water equations written in a nonorthogonal curvilinear matrix form and discretized using finite volumes. Roe's flux function is used for the convection terms, and a nonlinear limiter is applied to prevent spurious oscillations. Validation tests include frictionless rectangular and circular dam-breaks, an oblique hydraulic jump, jet-forced flow in a circular basin, and vortex shedding from a vertical surface-piercing cylinder. The results indicate that the model accurately simulates sharp fronts, a flow discontinuity between subcritical and supercritical conditions, recirculation in a basin, and unsteady wake flows.
    • Download: (471.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Godunov-Type Solution of Curvilinear Shallow-Water Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24952
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMasayuki Fujihara
    contributor authorAlistair G. L. Borthwick
    date accessioned2017-05-08T20:43:40Z
    date available2017-05-08T20:43:40Z
    date copyrightNovember 2000
    date issued2000
    identifier other%28asce%290733-9429%282000%29126%3A11%28827%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24952
    description abstractThis paper presents details of a second-order accurate Godunov-type numerical model of the two-dimensional conservative hyperbolic shallow-water equations written in a nonorthogonal curvilinear matrix form and discretized using finite volumes. Roe's flux function is used for the convection terms, and a nonlinear limiter is applied to prevent spurious oscillations. Validation tests include frictionless rectangular and circular dam-breaks, an oblique hydraulic jump, jet-forced flow in a circular basin, and vortex shedding from a vertical surface-piercing cylinder. The results indicate that the model accurately simulates sharp fronts, a flow discontinuity between subcritical and supercritical conditions, recirculation in a basin, and unsteady wake flows.
    publisherAmerican Society of Civil Engineers
    titleGodunov-Type Solution of Curvilinear Shallow-Water Equations
    typeJournal Paper
    journal volume126
    journal issue11
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2000)126:11(827)
    treeJournal of Hydraulic Engineering:;2000:;Volume ( 126 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian