YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pipeline Column Separation Flow Regimes

    Source: Journal of Hydraulic Engineering:;1999:;Volume ( 125 ):;issue: 008
    Author:
    Anton Bergant
    ,
    Angus R. Simpson
    DOI: 10.1061/(ASCE)0733-9429(1999)125:8(835)
    Publisher: American Society of Civil Engineers
    Abstract: A generalized set of pipeline column separation equations is presented describing all conventional types of low-pressure regions. These include water hammer zones, distributed vaporous cavitation, vapor cavities, and shocks (that eliminate distributed vaporous cavitation zones). Numerical methods for solving these equations are then considered, leading to a review of three numerical models of column separation. These include the discrete vapor cavity model, the discrete gas cavity model, and the generalized interface vaporous cavitation model. The generalized interface vaporous cavitation model enables direct tracking of actual column separation phenomena (e.g., discrete cavities, vaporous cavitation zones), and consequently, better insight into the transient event. Numerical results from the three column separation models are compared with results of measurements for a number of flow regimes initiated by a rapid closure of a downstream valve in a sloping pipeline laboratory apparatus. Finally, conclusions are drawn about the accuracy of the modeling approaches. A new classification of column separation (active or passive) is proposed based on whether the maximum pressure in a pipeline following column separation results in a short-duration pressure pulse that exceeds the magnitude of the Joukowsky pressure rise for rapid valve closure.
    • Download: (383.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pipeline Column Separation Flow Regimes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24888
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorAnton Bergant
    contributor authorAngus R. Simpson
    date accessioned2017-05-08T20:43:34Z
    date available2017-05-08T20:43:34Z
    date copyrightAugust 1999
    date issued1999
    identifier other%28asce%290733-9429%281999%29125%3A8%28835%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24888
    description abstractA generalized set of pipeline column separation equations is presented describing all conventional types of low-pressure regions. These include water hammer zones, distributed vaporous cavitation, vapor cavities, and shocks (that eliminate distributed vaporous cavitation zones). Numerical methods for solving these equations are then considered, leading to a review of three numerical models of column separation. These include the discrete vapor cavity model, the discrete gas cavity model, and the generalized interface vaporous cavitation model. The generalized interface vaporous cavitation model enables direct tracking of actual column separation phenomena (e.g., discrete cavities, vaporous cavitation zones), and consequently, better insight into the transient event. Numerical results from the three column separation models are compared with results of measurements for a number of flow regimes initiated by a rapid closure of a downstream valve in a sloping pipeline laboratory apparatus. Finally, conclusions are drawn about the accuracy of the modeling approaches. A new classification of column separation (active or passive) is proposed based on whether the maximum pressure in a pipeline following column separation results in a short-duration pressure pulse that exceeds the magnitude of the Joukowsky pressure rise for rapid valve closure.
    publisherAmerican Society of Civil Engineers
    titlePipeline Column Separation Flow Regimes
    typeJournal Paper
    journal volume125
    journal issue8
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(1999)125:8(835)
    treeJournal of Hydraulic Engineering:;1999:;Volume ( 125 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian