YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Space-Time Conservation Method Applied to Saint Venant Equations

    Source: Journal of Hydraulic Engineering:;1998:;Volume ( 124 ):;issue: 005
    Author:
    Thomas Molls
    ,
    Frank Molls
    DOI: 10.1061/(ASCE)0733-9429(1998)124:5(501)
    Publisher: American Society of Civil Engineers
    Abstract: A new numerical technique by Chang is described and used to solve the one-dimensional (1D) and two-dimensional (2D) Saint Venant equations. This new technique differs from traditional numerical methods (i.e., finite-difference, finite-element, finite-volume, spectral methods, etc.). Chang's method treats space and time on the same footing, so that space and time are unified—a key characteristic that distinguishes the new method from other techniques. This method is explicit, uses a staggered grid, enforces flux conservation in space and time, and does not require upwinding, flux-splitting, flux limiters, evaluation of eigenvalues, or the addition of artificial viscosity. Furthermore, the scheme is simple, easy to implement (see Appendix I), and can be extended to higher dimensions. First, the new technique, as developed by Chang, is introduced, explained, and applied to the 1D Saint Venant equations. To illustrate its effectiveness, an idealized dam-break and a hydraulic jump in a straight rectangular channel are simulated. The numerical results obtained using the new method are compared with results from other, more conventional techniques of similar complexity, experimental data, and an analytical solution. Next, Chang's scheme is extended for solution of the 2D Saint Venant (i.e., shallow water or depth-averaged) equations. The writers do not follow Chang's 2D development but instead employ Strang's method of fractional steps, which transforms the 2D problem into two 1D problems. The new 2D scheme is applied to an oblique hydraulic jump, and the results are compared with an analytical solution.
    • Download: (925.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Space-Time Conservation Method Applied to Saint Venant Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24634
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorThomas Molls
    contributor authorFrank Molls
    date accessioned2017-05-08T20:43:09Z
    date available2017-05-08T20:43:09Z
    date copyrightMay 1998
    date issued1998
    identifier other%28asce%290733-9429%281998%29124%3A5%28501%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24634
    description abstractA new numerical technique by Chang is described and used to solve the one-dimensional (1D) and two-dimensional (2D) Saint Venant equations. This new technique differs from traditional numerical methods (i.e., finite-difference, finite-element, finite-volume, spectral methods, etc.). Chang's method treats space and time on the same footing, so that space and time are unified—a key characteristic that distinguishes the new method from other techniques. This method is explicit, uses a staggered grid, enforces flux conservation in space and time, and does not require upwinding, flux-splitting, flux limiters, evaluation of eigenvalues, or the addition of artificial viscosity. Furthermore, the scheme is simple, easy to implement (see Appendix I), and can be extended to higher dimensions. First, the new technique, as developed by Chang, is introduced, explained, and applied to the 1D Saint Venant equations. To illustrate its effectiveness, an idealized dam-break and a hydraulic jump in a straight rectangular channel are simulated. The numerical results obtained using the new method are compared with results from other, more conventional techniques of similar complexity, experimental data, and an analytical solution. Next, Chang's scheme is extended for solution of the 2D Saint Venant (i.e., shallow water or depth-averaged) equations. The writers do not follow Chang's 2D development but instead employ Strang's method of fractional steps, which transforms the 2D problem into two 1D problems. The new 2D scheme is applied to an oblique hydraulic jump, and the results are compared with an analytical solution.
    publisherAmerican Society of Civil Engineers
    titleSpace-Time Conservation Method Applied to Saint Venant Equations
    typeJournal Paper
    journal volume124
    journal issue5
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(1998)124:5(501)
    treeJournal of Hydraulic Engineering:;1998:;Volume ( 124 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian