YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experiments on Saltation of Sand in Water

    Source: Journal of Hydraulic Engineering:;1998:;Volume ( 124 ):;issue: 010
    Author:
    Yarko Niño
    ,
    Marcelo García
    DOI: 10.1061/(ASCE)0733-9429(1998)124:10(1014)
    Publisher: American Society of Civil Engineers
    Abstract: A high-speed video system was used to study saltation of sand in an open channel flow. High rates of image acquisition provided the information needed to resolve details of the Lagrangian properties of particle motion. Saltation of sand is described in terms of statistical properties of particle trajectories such as mean values and standard deviations of saltation length, height, and streamwise particle velocity. Results are compared with available empirical data. Saltation height seems to be independent of particle size when made dimensionless with the particle diameter; however, the dimensionless saltation length appears to increase as the particle size decreases. Particle collision with the bed is also analyzed. Observations of this process indicate that most of the interactions between saltating particles and the bed are of the collision-rebound type, which contradicts previous discussions on the subject. The estimated value of the dynamic friction coefficient is about half that proposed by Bagnold, in agreement with previous empirical evidence. Friction and restitution coefficients at collision are also estimated from the experimental observations. Nonvanishing values of the latter and values of the former lower than unity are obtained in agreement with previous work with gravel-size particles. Observations of particle resting time, particle reentrainment into saltation, particle rotation, and particle transverse motion during saltation are also presented, providing new insights on the physical processes associated with the saltation phenomenon.
    • Download: (1.736Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experiments on Saltation of Sand in Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24535
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorYarko Niño
    contributor authorMarcelo García
    date accessioned2017-05-08T20:43:00Z
    date available2017-05-08T20:43:00Z
    date copyrightOctober 1998
    date issued1998
    identifier other%28asce%290733-9429%281998%29124%3A10%281014%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24535
    description abstractA high-speed video system was used to study saltation of sand in an open channel flow. High rates of image acquisition provided the information needed to resolve details of the Lagrangian properties of particle motion. Saltation of sand is described in terms of statistical properties of particle trajectories such as mean values and standard deviations of saltation length, height, and streamwise particle velocity. Results are compared with available empirical data. Saltation height seems to be independent of particle size when made dimensionless with the particle diameter; however, the dimensionless saltation length appears to increase as the particle size decreases. Particle collision with the bed is also analyzed. Observations of this process indicate that most of the interactions between saltating particles and the bed are of the collision-rebound type, which contradicts previous discussions on the subject. The estimated value of the dynamic friction coefficient is about half that proposed by Bagnold, in agreement with previous empirical evidence. Friction and restitution coefficients at collision are also estimated from the experimental observations. Nonvanishing values of the latter and values of the former lower than unity are obtained in agreement with previous work with gravel-size particles. Observations of particle resting time, particle reentrainment into saltation, particle rotation, and particle transverse motion during saltation are also presented, providing new insights on the physical processes associated with the saltation phenomenon.
    publisherAmerican Society of Civil Engineers
    titleExperiments on Saltation of Sand in Water
    typeJournal Paper
    journal volume124
    journal issue10
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(1998)124:10(1014)
    treeJournal of Hydraulic Engineering:;1998:;Volume ( 124 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian