YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two-Dimensional Boundary-Fitted Circulation Model in Spherical Coordinates

    Source: Journal of Hydraulic Engineering:;1996:;Volume ( 122 ):;issue: 009
    Author:
    Muslim Muin
    ,
    Malcolm Spaulding
    DOI: 10.1061/(ASCE)0733-9429(1996)122:9(512)
    Publisher: American Society of Civil Engineers
    Abstract: A two-dimensional, vertically averaged, unsteady circulation model, using a nonorthogonal boundary-fitted technique, was developed in spherical coordinates for predicting sea level and currents in estuarine and shelf waters. Both the dependent and independent variables are transformed into a curvilinear coordinate system. The governing equations are solved by a semiimplicit method in which the elevations are solved implicitly and the vertically averaged velocities are solved explicitly. The model employs a space-staggered grid system and a three-level time discretization. Truncation errors are second order both in space and time. The model was tested against analytic solutions for a standing wave in a closed basin, tidal circulation in a simple rectangular channel with an irregular grid system and various degrees of rotation, and tidal flow in an annular section channel with quadratic bottom topography. The model was also tested against steady-state wind-induced setup in a closed irregular basin with constant depth represented by an irregular grid system. Comparison of the model predictions with the corresponding analytical solutions were very good. The model was applied to simulate tidal circulation in the Providence River. The agreement with available observations is very good. The model predicts that the tide exhibits a cooscillating wave pattern with tidal currents leading tidal elevation by 2.8 to 3.8 h depending on location for the
    • Download: (1.126Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two-Dimensional Boundary-Fitted Circulation Model in Spherical Coordinates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24324
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorMuslim Muin
    contributor authorMalcolm Spaulding
    date accessioned2017-05-08T20:42:39Z
    date available2017-05-08T20:42:39Z
    date copyrightSeptember 1996
    date issued1996
    identifier other%28asce%290733-9429%281996%29122%3A9%28512%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24324
    description abstractA two-dimensional, vertically averaged, unsteady circulation model, using a nonorthogonal boundary-fitted technique, was developed in spherical coordinates for predicting sea level and currents in estuarine and shelf waters. Both the dependent and independent variables are transformed into a curvilinear coordinate system. The governing equations are solved by a semiimplicit method in which the elevations are solved implicitly and the vertically averaged velocities are solved explicitly. The model employs a space-staggered grid system and a three-level time discretization. Truncation errors are second order both in space and time. The model was tested against analytic solutions for a standing wave in a closed basin, tidal circulation in a simple rectangular channel with an irregular grid system and various degrees of rotation, and tidal flow in an annular section channel with quadratic bottom topography. The model was also tested against steady-state wind-induced setup in a closed irregular basin with constant depth represented by an irregular grid system. Comparison of the model predictions with the corresponding analytical solutions were very good. The model was applied to simulate tidal circulation in the Providence River. The agreement with available observations is very good. The model predicts that the tide exhibits a cooscillating wave pattern with tidal currents leading tidal elevation by 2.8 to 3.8 h depending on location for the
    publisherAmerican Society of Civil Engineers
    titleTwo-Dimensional Boundary-Fitted Circulation Model in Spherical Coordinates
    typeJournal Paper
    journal volume122
    journal issue9
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(1996)122:9(512)
    treeJournal of Hydraulic Engineering:;1996:;Volume ( 122 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian