YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    3D Model of Estuarine Circulation and Water Quality Induced by Surface Discharges

    Source: Journal of Hydraulic Engineering:;1995:;Volume ( 121 ):;issue: 004
    Author:
    Wenrui Huang
    ,
    Malcolm Spaulding
    DOI: 10.1061/(ASCE)0733-9429(1995)121:4(300)
    Publisher: American Society of Civil Engineers
    Abstract: A three-dimensional numerical model system was developed to predict circulation and water quality induced by surface discharges in estuarine and coastal waters. The model system consists of hydrodynamic, pollutant-transport, and turbulence models. The model employs a new vertical γ-coordinate system, using an algebraic transformation within the well-known σ-coordinate transformation. Grids can be concentrated near the surface and bottom boundaries with a concentration factor proportional to the local water depth. Conservation equations are solved by finite-difference techniques. A semiimplicit algorithm is used for the vertically averaged exterior flow, and a vertically implicit procedure for the interior flow as well as salinity, pollutant constituents, and turbulent kinetic energy and dissipation. The hydrodynamic model was tested against analytical solutions for tidal forcing and density-induced flow in an open channel, and wind-forced flow in a closed basin. The vertical γ-grid system was tested for wind- and density-induced-flow cases. The constituent transport model was tested for salinity intrusion in a uniform open channel. Simulations show good agreement with analytical solutions. The fully coupled model was tested against laboratory experiments for a surface freshwater discharged into a saline quiescent receiving water in a constant depth basin. The predicted velocity and shearing depth, with the eddy viscosity obtained from the turbulence model, compare well with observations.
    • Download: (1.038Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      3D Model of Estuarine Circulation and Water Quality Induced by Surface Discharges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/24118
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorWenrui Huang
    contributor authorMalcolm Spaulding
    date accessioned2017-05-08T20:42:18Z
    date available2017-05-08T20:42:18Z
    date copyrightApril 1995
    date issued1995
    identifier other%28asce%290733-9429%281995%29121%3A4%28300%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/24118
    description abstractA three-dimensional numerical model system was developed to predict circulation and water quality induced by surface discharges in estuarine and coastal waters. The model system consists of hydrodynamic, pollutant-transport, and turbulence models. The model employs a new vertical γ-coordinate system, using an algebraic transformation within the well-known σ-coordinate transformation. Grids can be concentrated near the surface and bottom boundaries with a concentration factor proportional to the local water depth. Conservation equations are solved by finite-difference techniques. A semiimplicit algorithm is used for the vertically averaged exterior flow, and a vertically implicit procedure for the interior flow as well as salinity, pollutant constituents, and turbulent kinetic energy and dissipation. The hydrodynamic model was tested against analytical solutions for tidal forcing and density-induced flow in an open channel, and wind-forced flow in a closed basin. The vertical γ-grid system was tested for wind- and density-induced-flow cases. The constituent transport model was tested for salinity intrusion in a uniform open channel. Simulations show good agreement with analytical solutions. The fully coupled model was tested against laboratory experiments for a surface freshwater discharged into a saline quiescent receiving water in a constant depth basin. The predicted velocity and shearing depth, with the eddy viscosity obtained from the turbulence model, compare well with observations.
    publisherAmerican Society of Civil Engineers
    title3D Model of Estuarine Circulation and Water Quality Induced by Surface Discharges
    typeJournal Paper
    journal volume121
    journal issue4
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(1995)121:4(300)
    treeJournal of Hydraulic Engineering:;1995:;Volume ( 121 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian