YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Landform Grading and Slope Evolution

    Source: Journal of Geotechnical Engineering:;1995:;Volume ( 121 ):;issue: 010
    Author:
    Horst J. Schor
    ,
    Donald H. Gray
    DOI: 10.1061/(ASCE)0733-9410(1995)121:10(729)
    Publisher: American Society of Civil Engineers
    Abstract: Transportation corridors and residential developments in steep terrain both require that some grading be carried out to accommodate roadways and building sites. The manner in which this grading is planned and executed and the nature of the resulting topography or landforms that are created affect not only the visual or aesthetic impact of the development but also the long-term stability of the slopes and effectiveness of landscaping and revegetation efforts. Conventionally graded slopes can be characterized by essentially planar slope surfaces with constant gradients. Most slopes in nature, however, consist of complex landforms covered by vegetation that grows in patterns that are adjusted to hillside hydrogeology. Analysis of slope-evolution models reveals that a planar slope in many cases is not an equilibrium configuration. Landform-graded slopes on the other hand mimic stable natural slopes and are characterized by a variety of shapes, including convex and concave forms. Downslope drains either follow natural drop lines in the slope or are hidden from view in swale-and-berm combinations. Landscaping plants are placed in patterns that occur in nature as opposed to random or artificial configurations. The relatively small increase in the costs of engineering and design for landform grading are more than offset by improved visual and aesthetic impact, quicker regulatory approval, decreased hillside maintenance and sediment removal costs, and increased marketability and public acceptance.
    • Download: (761.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Landform Grading and Slope Evolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/21548
    Collections
    • Journal of Geotechnical Engineering

    Show full item record

    contributor authorHorst J. Schor
    contributor authorDonald H. Gray
    date accessioned2017-05-08T20:37:28Z
    date available2017-05-08T20:37:28Z
    date copyrightOctober 1995
    date issued1995
    identifier other%28asce%290733-9410%281995%29121%3A10%28729%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/21548
    description abstractTransportation corridors and residential developments in steep terrain both require that some grading be carried out to accommodate roadways and building sites. The manner in which this grading is planned and executed and the nature of the resulting topography or landforms that are created affect not only the visual or aesthetic impact of the development but also the long-term stability of the slopes and effectiveness of landscaping and revegetation efforts. Conventionally graded slopes can be characterized by essentially planar slope surfaces with constant gradients. Most slopes in nature, however, consist of complex landforms covered by vegetation that grows in patterns that are adjusted to hillside hydrogeology. Analysis of slope-evolution models reveals that a planar slope in many cases is not an equilibrium configuration. Landform-graded slopes on the other hand mimic stable natural slopes and are characterized by a variety of shapes, including convex and concave forms. Downslope drains either follow natural drop lines in the slope or are hidden from view in swale-and-berm combinations. Landscaping plants are placed in patterns that occur in nature as opposed to random or artificial configurations. The relatively small increase in the costs of engineering and design for landform grading are more than offset by improved visual and aesthetic impact, quicker regulatory approval, decreased hillside maintenance and sediment removal costs, and increased marketability and public acceptance.
    publisherAmerican Society of Civil Engineers
    titleLandform Grading and Slope Evolution
    typeJournal Paper
    journal volume121
    journal issue10
    journal titleJournal of Geotechnical Engineering
    identifier doi10.1061/(ASCE)0733-9410(1995)121:10(729)
    treeJournal of Geotechnical Engineering:;1995:;Volume ( 121 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian