| contributor author | M. H. Maher | |
| contributor author | Y. C. Ho | |
| date accessioned | 2017-05-08T20:37:20Z | |
| date available | 2017-05-08T20:37:20Z | |
| date copyright | August 1994 | |
| date issued | 1994 | |
| identifier other | %28asce%290733-9410%281994%29120%3A8%281381%29.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/21483 | |
| description abstract | The mechanical properties of a kaolinite/fiber soil composite were evaluated by a series of laboratory unconfined‐compression, splitting‐tension, three‐point‐bending, and hydraulic‐conductivity tests. The inclusion of randomly distributed fibers significantly increased the peak compressive strength, ductility, splitting tensile strength, and flexural toughness of kaolinite clay. The increase in strength and toughness was a function of fiber length and content, and the water content of the composite. Increasing fiber content increased the compressive and tensile strength, and the toughness index of kaolinite clay, with the effect being more pronounced at lower water contents. The contribution of fibers to peak compressive and tensile strengths were reduced, and ductility increased, with increasing fiber length. The fiber inclusion increased the hydraulic conductivity of the composite and the increase was more pronounced at higher fiber contents. Despite the increase, the hydraulic conductivity of the composite was still low enough to be considered for some landfill applications. | |
| publisher | American Society of Civil Engineers | |
| title | Mechanical Properties of Kaolinite/Fiber Soil Composite | |
| type | Journal Paper | |
| journal volume | 120 | |
| journal issue | 8 | |
| journal title | Journal of Geotechnical Engineering | |
| identifier doi | 10.1061/(ASCE)0733-9410(1994)120:8(1381) | |
| tree | Journal of Geotechnical Engineering:;1994:;Volume ( 120 ):;issue: 008 | |
| contenttype | Fulltext | |