YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification and Quantification of Environmental Issues of Aging Coal-Based Power Plant—Case Study

    Source: Journal of Energy Engineering:;2001:;Volume ( 127 ):;issue: 003
    Author:
    Mukesh Sharma
    ,
    Praveen Vyas
    DOI: 10.1061/(ASCE)0733-9402(2001)127:3(59)
    Publisher: American Society of Civil Engineers
    Abstract: This research has focused on three environmental issues: (1) fugitive dust emissions; (2) water management; and (3) operational parameters (such as thermal efficiency) of aging coal-based thermal power plants, using a case study. Regarding dust emissions, it was observed that the identified sources are fugitive in nature and contribute to a significant loss of raw material and particulate emissions. These sources include coal dust emissions from a wagon tippler area, ball mill operations, and leakage from the ash hoppers of electrostatic precipitators. In situ measurements of air quality and meteorological measurements were undertaken to estimate the emissions from a wagon tippler area, and a mass balance technique was applied across other operations to estimate the emissions. These fugitive emissions were about 98% of the total particulate emissions and the remaining 2% emissions were from the stack. The losses of water in various unit operations were also examined. The sources of water losses include the clariflocculator, the demineralization plant, and auxiliary water cooling of motors and pumps. The operational parameters such as auxiliary power requirement and thermal efficiency that indirectly affect the environment were also studied. The auxiliary power requirement was estimated as 9 MW against the accepted requirement of 7 MW. The thermal efficiency of the plant was estimated to be 26%, against the acceptable level of 32% of such plants in India. This study suggests that a significant reduction in cost and improvements in the environment could be achieved if the plant could be operated at rated efficiencies. It was observed that nonpoint (fugitive) sources, although significant, are ignored.
    • Download: (114.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification and Quantification of Environmental Issues of Aging Coal-Based Power Plant—Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/19108
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorMukesh Sharma
    contributor authorPraveen Vyas
    date accessioned2017-05-08T20:32:34Z
    date available2017-05-08T20:32:34Z
    date copyrightDecember 2001
    date issued2001
    identifier other%28asce%290733-9402%282001%29127%3A3%2859%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/19108
    description abstractThis research has focused on three environmental issues: (1) fugitive dust emissions; (2) water management; and (3) operational parameters (such as thermal efficiency) of aging coal-based thermal power plants, using a case study. Regarding dust emissions, it was observed that the identified sources are fugitive in nature and contribute to a significant loss of raw material and particulate emissions. These sources include coal dust emissions from a wagon tippler area, ball mill operations, and leakage from the ash hoppers of electrostatic precipitators. In situ measurements of air quality and meteorological measurements were undertaken to estimate the emissions from a wagon tippler area, and a mass balance technique was applied across other operations to estimate the emissions. These fugitive emissions were about 98% of the total particulate emissions and the remaining 2% emissions were from the stack. The losses of water in various unit operations were also examined. The sources of water losses include the clariflocculator, the demineralization plant, and auxiliary water cooling of motors and pumps. The operational parameters such as auxiliary power requirement and thermal efficiency that indirectly affect the environment were also studied. The auxiliary power requirement was estimated as 9 MW against the accepted requirement of 7 MW. The thermal efficiency of the plant was estimated to be 26%, against the acceptable level of 32% of such plants in India. This study suggests that a significant reduction in cost and improvements in the environment could be achieved if the plant could be operated at rated efficiencies. It was observed that nonpoint (fugitive) sources, although significant, are ignored.
    publisherAmerican Society of Civil Engineers
    titleIdentification and Quantification of Environmental Issues of Aging Coal-Based Power Plant—Case Study
    typeJournal Paper
    journal volume127
    journal issue3
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)0733-9402(2001)127:3(59)
    treeJournal of Energy Engineering:;2001:;Volume ( 127 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian