Show simple item record

contributor authorKanai, R. A.
contributor authorDesavale, R. G.
contributor authorChavan, S. P.
date accessioned2017-05-09T01:33:50Z
date available2017-05-09T01:33:50Z
date issued2016
identifier issn0742-4787
identifier othertrib_138_03_031103.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162682
description abstractIn this paper, an innovative system for conditionbased monitoring (CBM) using modelbased estimation (MBE) and artificial neural network (ANN) is proposed. Fault diagnosis of deep groove ball bearings (DGBB) is a key machine element for stability of rotating machinery. MBE model is proposed to demonstrate and estimate the vibration characteristics of bearings. It is realized that it may be worth mentioning that the vibration analysis of damaged bearings at all the positions of a structure is difficult to obtain. For this purpose, methods have been discussed to get the utmost information to notify bearing faults. The ANN approach enables us to determine the effects of various parameters of the vibrations by conducting the experiments. The results point out that defect size, speed, load, unbalance, and clearance influence the vibrations significantly. Experimental simulated data using the MBE and ANN models of rotor–bearing are used to identify the damage diagnosis at a reasonable level of accuracy. The results of the experiments consist in constantly evaluating the performance of the bearing and thereby detecting the faults and vibration characteristics successfully. The effects of faults and vibration characteristics obtained using the experimental MBE and ANN are studied.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
typeJournal Paper
journal volume138
journal issue3
journal titleJournal of Tribology
identifier doi10.1115/1.4032525
journal fristpage31103
journal lastpage31103
identifier eissn1528-8897
treeJournal of Tribology:;2016:;volume( 138 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record