Show simple item record

contributor authorJackson, J. Derek
date accessioned2017-05-09T01:32:11Z
date available2017-05-09T01:32:11Z
date issued2016
identifier issn2332-8983
identifier otherNERS_2_1_011001.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162195
description abstractA simple criterion for screening experimental data on turbulent heat transfer in vertical tubes to identify those not significantly influenced by buoyancy was proposed by the author many years ago and found to work quite well for water and air at normal pressures. However, it was recognized even then that the ideas on which the criterion was based were too simplistic to be suitable for use in the case of fluids at supercritical pressure. With the passage of time and tremendous advancement in data processing capability using presentday computers, it is now possible to contemplate adopting a refined approach specifically designed to be suitable for such fluids. The present paper describes a semiempirical model of buoyancyinfluenced heat transfer to fluids at supercritical pressure, which takes careful account of nonuniformity of fluid properties. It provides a criterion for determining the conditions under which buoyancy influences are negligibly small. Thus, the extensive databases now available on heat transfer to fluids at supercritical pressure can be reliably screened to eliminate those affected by such influences. Then, the many correlation equations that have been proposed for forced convection heat transfer can be evaluated in a reliable manner. These equations mostly relate Nusselt number to Reynolds number, Prandtl number, and simple property ratio correction terms. Thus, they should be evaluated using only experimental data that are definitely not influenced by buoyancy. A further outcome of the present paper is that it might now prove possible to correlate the buoyancyinfluenced data in such databases and fit the equation for mixed convection heat transfer yielded by the model to the correlated data. If this can be done, it will represent a major advancement in terms of providing thermal analysts with a valuable new tool.
publisherThe American Society of Mechanical Engineers (ASME)
titleScreening and Correlating Data on Heat Transfer to Fluids at Supercritical Pressure
typeJournal Paper
journal volume2
journal issue1
journal titleJournal of Nuclear Engineering and Radiation Science
identifier doi10.1115/1.4031378
journal fristpage11001
journal lastpage11001
treeJournal of Nuclear Engineering and Radiation Science:;2016:;volume( 002 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record