Show simple item record

contributor authorVarble, Nicole
contributor authorXiang, Jianping
contributor authorLin, Ning
contributor authorLevy, Elad
contributor authorMeng, Hui
date accessioned2017-05-09T01:26:12Z
date available2017-05-09T01:26:12Z
date issued2016
identifier issn0148-0731
identifier otherbio_138_07_071004.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160417
description abstractRecent highresolution computational fluid dynamics (CFD) studies have detected persistent flow instability in intracranial aneurysms (IAs) that was not observed in previous in silico studies. These flow fluctuations have shown incidental association with rupture in a small aneurysm dataset. The aims of this study are to explore the capabilities and limitations of a commercial cfd solver in capturing such velocity fluctuations, whether fluctuation kinetic energy (fKE) as a marker to quantify such instability could be a potential parameter to predict aneurysm rupture, and what geometric parameters might be associated with such fluctuations. First, we confirmed that the secondorder discretization schemes and high spatial and temporal resolutions are required to capture these aneurysmal flow fluctuations. Next, we analyzed 56 patientspecific middle cerebral artery (MCA) aneurysms (12 ruptured) by transient, highresolution CFD simulations with a cycleaveraged, constant inflow boundary condition. Finally, to explore the mechanism by which such flow instabilities might arise, we investigated correlations between fKE and several aneurysm geometrical parameters. Our results show that flow instabilities were present in 8 of 56 MCA aneurysms, all of which were unruptured bifurcation aneurysms. Statistical analysis revealed that fKE could not differentiate ruptured from unruptured aneurysms. Thus, our study does not lend support to these flow instabilities (based on a cycleaveraged constant inflow as opposed to peak velocity) being a marker for rupture. We found a positive correlation between fKE and aneurysm size as well as size ratio. This suggests that the intrinsic flow instability may be associated with the breakdown of an inflow jet penetrating the aneurysm space.
publisherThe American Society of Mechanical Engineers (ASME)
titleFlow Instability Detected by High Resolution Computational Fluid Dynamics in Fifty Six Middle Cerebral Artery Aneurysms
typeJournal Paper
journal volume138
journal issue6
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4033477
journal fristpage61009
journal lastpage61009
identifier eissn1528-8951
treeJournal of Biomechanical Engineering:;2016:;volume( 138 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record