contributor author | Zhang, Luzeng | |
contributor author | Yin, Juan | |
contributor author | Koo Moon, Hee | |
date accessioned | 2017-05-09T01:24:22Z | |
date available | 2017-05-09T01:24:22Z | |
date issued | 2015 | |
identifier issn | 0889-504X | |
identifier other | turbo_137_02_021003.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/159880 | |
description abstract | The effects of airfoil showerhead (SH) injection angle and filmcooling hole compound angle on nozzle endwall cooling (second order filmcooling effects, also called "phantom cooling") were experimentally investigated in a scaled linear cascade. The test cascade was built based on a typical industrial gas turbine nozzle vane. Endwall surface phantom cooling film effectiveness measurements were made using a computerized pressure sensitive paint (PSP) technique. Nitrogen gas was used to simulate cooling flow as well as a tracer gas to indicate oxygen concentration such that film effectiveness can be obtained by the mass transfer analogy. Two separate nozzle test models were fabricated, which have the same number and size of filmcooling holes but different configurations. One had a SH angle of 45 deg and no compound angles on the pressure and suction side (SS) film holes. The other had a 30 deg SH angle and 30 deg compound angles on the pressure and SS filmcooling holes. Nitrogen gas (cooling air) was fed through nozzle vanes, and measurements were conducted on the endwall surface between the two airfoils where no direct film cooling was applied. Six cooling mass flow ratios (MFRs, blowing ratios) were studied, and local (phantom) film effectiveness distributions were measured. Film effectiveness distributions were pitchwise averaged for comparison. Phantom cooling on the endwall by the SS film injections was found to be insignificant, but phantom cooling on the endwall by the pressure side (PS) airfoil film injections noticeably helped the endwall cooling (phantom cooling) and was a strong function of the MFR. It was concluded that reducing the SH angle and introducing a compound angle on the PS injections would enhance the endwall surface phantom cooling, particularly for a higher MFR. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Effects of Vane Showerhead Injection Angle and Film Compound Angle on Nozzle Endwall Cooling (Phantom Cooling) | |
type | Journal Paper | |
journal volume | 137 | |
journal issue | 2 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4028291 | |
journal fristpage | 21003 | |
journal lastpage | 21003 | |
identifier eissn | 1528-8900 | |
tree | Journal of Turbomachinery:;2015:;volume( 137 ):;issue: 002 | |
contenttype | Fulltext | |