description abstract | In a proton exchange membrane fuel cell (PEMFC), the hydrogen feed into the anode in a periodical pressure swing, socalled hydrogen pressure pulsation feed (HPPF), significantly affects the transport phenomena of hydrogen and water in the anode flow field. HPPF could adjust the distribution of the back diffusion water and the hydrogen partial pressure along the anode flow channels, improve hydrogen mass transfer in the anode flow field, and enhance the diffusion of hydrogen in the porous medium (anode diffusion layer). On the other hand, HPPF technique could mitigate the anode flooding issue caused by water back diffusion from the cathode, improve the fuel cell performance. In this work, the principle of HPPF technique was introduced and analyzed by a mathematic approach. Some of the important parameters used in HPPF technique, such as amplitude of pulsation pressure, pulsating frequency, etc., were experimentally investigated on deadend mode PEMFC stack. The experimental results showed that the amplitude of pressure pulsation, pulsating frequency, and position applied for HPPF highly affected the performance of the PEMFC stack. It can be seen that higher the frequency and/or amplitude of pressure pulsation, the better the performance of PEMFC stack. | |