description abstract | In recent years, lattice Boltzmann methods (LBMs) have become popular for solving fluid flow problems of engineering interest. Reasons for this popularity are due to the advantages of this method, which are, for example, the simplicity to handle complex geometries and the high efficiency in calculating transient flows. For the operational reliability and efficiency of pumps and pump systems, the incoming flow conditions are crucial. Since the efficiency and reliability requirements of pumps are rising and must be guaranteed by the pump and plant manufacturer, the flow conditions in pump intakes need to be evaluated during plant design. Recent trends show that pump intakes are built more and more compact, what makes the flow in the intake even more complex and holds a higher risk for unacceptable pump inflow conditions. In this contribution, a numerical scheme for the simulation of pump intake flows based on a lattice Boltzmannlarge eddy simulation (LES) approach is presented and the ability of the method to capture the flow phenomena in intake flows is analyzed. Special attention is turned to the potential of the numerical scheme to reproduce the transient vortex behavior of intake flows, which results in a very complex flow structure and is challenging to model numerically. | |