Show simple item record

contributor authorDu, Zhongwei
contributor authorZeng, Fanhua
contributor authorChan, Christine
date accessioned2017-05-09T01:17:18Z
date available2017-05-09T01:17:18Z
date issued2015
identifier issn0195-0738
identifier otherjert_137_04_042901.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157798
description abstractCold heavy oil production with sand (CHOPS) has been applied successfully in many oil fields in Canada. However, typically only 5–15% of the original oil in place (OOIP) is recovered during cold production. Therefore, effective followup techniques are of great importance. Cyclic solvent injection (CSI), as a postCHOPS process, has greater potential than continuous solvent injection to enhance heavy oil recovery. Continuous solvent injection results in early breakthrough due to the existence of wormholes; while in CSI process, the existence of wormholes can increase the contact area of solvent and heavy oil and the wormholes also provide channels that allow diluted oil to flow back to the wellbore. In this study, the effects of wormhole and sandpack model properties on the performance of the CSI process are experimentally investigated using three different cylindrical sandpack models. The length and diameter of the base model are 30.48 cm and 3.81 cm, respectively. The other two models, one with a larger length (i.e., 60.96 cm) and the other with a larger diameter (i.e., 15.24 cm), are used for upscaling study in the directions parallel and perpendicular to the wormhole, respectively. The porosity and permeability of these models are about 35% and 5.5 Darcy typically. A typical western Canadian oil sample with a viscosity of 4330 mPaآ·s at 15 آ°C is used. And pure propane is selected as the solvent. The experimental results suggest that the existence of wormhole can significantly increase the oil production rate. The larger the wormhole coverage is, the better the CSI performance obtained. In terms of the effect of wormhole's location, a reservoir or well with wormholes developed at bottom is more favorable for postCHOPS CSI process due to the gravity effect. The production of the CSI process can be divided into two phases: early time chamber rising and late time chamber spreading phases. The oil recovery factor in the chamber rising phase is almost independent of the sandpack model diameter; and the oil relative production rates (the oil production rate divided by the OOIP) in two models with different diameters are close during the chamber spreading phase due to similar solvent dispersion rate. It is also found that if the wormhole length is the same, the sandpack model length hardly affects the oil production rate in the earlier stage. In terms of the effects of the wormhole orientation, the well with a horizontal wormhole is inclined to get a good CSI performance. Through analyzing the experimental data, a relationship of oil production rate to drainage height is also obtained and verified.
publisherThe American Society of Mechanical Engineers (ASME)
titleAn Experimental Study of the Post CHOPS Cyclic Solvent Injection Process
typeJournal Paper
journal volume137
journal issue4
journal titleJournal of Energy Resources Technology
identifier doi10.1115/1.4029972
journal fristpage42901
journal lastpage42901
identifier eissn1528-8994
treeJournal of Energy Resources Technology:;2015:;volume( 137 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record