Show simple item record

contributor authorSangston, Keith
contributor authorLittle, Jesse
contributor authorLyall, M. Eric
contributor authorSondergaard, Rolf
date accessioned2017-05-09T01:13:45Z
date available2017-05-09T01:13:45Z
date issued2014
identifier issn0889-504X
identifier otherturbo_136_08_081006.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156649
description abstractThe hypothesis, posed in Part I, that excessive end wall loss of high lift low pressure turbine (LPT) airfoils is due to the influence of high stagger angles on the end wall pressure distribution and not front loading is evaluated in a linear cascade at Re = 100,000 using both experimental and computational studies. A nominally high lift and high stagger angle frontloaded profile (L2F) with aspect ratio 3.5 is contoured at the end wall to reduce the stagger angle while maintaining the front loading. The contouring process effectively generates a fillet at the end wall, so the resulting airfoil is referred to as L2FEF (end wall fillet). Although referred to as a fillet, this profile contouring process is novel in that it is designed to isolate the effect of stagger angle on end wall loss. Total pressure loss measurements downstream of the blade row indicate that the use of the lower stagger angle at the end wall reduces mixed out mass averaged end wall and passage losses approximately 23% and 10%, respectively. This is in good agreement with computational results used to design the contour which predict 18% and 7% loss reductions. The end wall flow field of the L2F and L2FEF models is measured using stereoscopic particle image velocimetry (PIV) in the passage. These data are used to quantify changes in the end wall flow field due to the contouring. PIV results show that this loss reduction is characterized by reduced inlet boundary layer separation as well as a change in strength and location of the suction side horseshoe vortex (SHV) and passage vortex (PV). The end wall profile contouring also produces a reduction in all terms of the Reynolds stress tensor consistent with a decrease in deformation work and overall flow unsteadiness. These results confirm that the stagger angle has a significant effect on highlift frontloaded LPT end wall loss. Low stagger profiling is successful in reducing end wall loss by limiting the development and migration of the low momentum fluid associated with the SHV and PV interaction.
publisherThe American Society of Mechanical Engineers (ASME)
titleEnd Wall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation
typeJournal Paper
journal volume136
journal issue8
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4025952
journal fristpage81006
journal lastpage81006
identifier eissn1528-8900
treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record