Show simple item record

contributor authorRahim, A.
contributor authorKhanal, B.
contributor authorHe, L.
contributor authorRomero, E.
date accessioned2017-05-09T01:13:43Z
date available2017-05-09T01:13:43Z
date issued2014
identifier issn0889-504X
identifier otherturbo_136_07_071002.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156639
description abstractOne of the most widely studied parameters in turbine blade shaping is blade lean, i.e., the tangential displacement of spanwise sections. However, there is a lack of published research that investigates the effect of blade lean under nonuniform temperature conditions (commonly referred to as a “hotstreakâ€‌) that are present at the combustor exit. Of particular interest is the impact of such an inflow temperature profile on heat transfer when the nozzle guide vane (NGV) blades are shaped. In the present work, a computational study has been carried out for a transonic turbine stage using an efficient unsteady Navier–Stokes solver (HYDRA). The configurations with a nominal vane and a compound leaned vane under uniform and hotstreak inlet conditions are analyzed. After confirming the typical NGV loading and aeroloss redistributions as seen in previous literature on blade lean, the focus has been directed to the rotor aerothermal behavior. While the overall stage efficiencies for the configurations are largely comparable, the results show strikingly different rotor heat transfer characteristics. For a uniform inlet, a leaned NGV has a detrimental effect on the rotor heat transfer. However, once the hotstreak is introduced, the trend is reversed; the leaned NGV leads to favorable heat transfer characteristics in general and for the rotor tip region in particular. The possible causal links for the observed aerothermal features are discussed. The present findings also highlight the significance of evaluating NGV shaping designs under properly conditioned inflow profiles, rather than extrapolating the wisdom derived from uniform inlet cases. The results also underline the importance of including rotor heat transfer and coolability during the NGV design process.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
typeJournal Paper
journal volume136
journal issue7
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4025947
journal fristpage71002
journal lastpage71002
identifier eissn1528-8900
treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record