Show simple item record

contributor authorSmith, Matthew A.
contributor authorMathison, Randall M.
contributor authorDunn, Michael G.
date accessioned2017-05-09T01:13:32Z
date available2017-05-09T01:13:32Z
date issued2014
identifier issn0889-504X
identifier otherturbo_136_05_051002.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156583
description abstractHeat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45 deg to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitchtoheight ratio (P/e) of 10 and a rib heighttohydraulic diameter ratio (e/Dh) range of 0.100–0.058 for AR 1:1–1:6, respectively. The experiments span a Reynolds number range of 4000–130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.
publisherThe American Society of Mechanical Engineers (ASME)
titleHeat Transfer for High Aspect Ratio Rectangular Channels in a Stationary Serpentine Passage With Turbulated and Smooth Surfaces
typeJournal Paper
journal volume136
journal issue5
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4025307
journal fristpage51002
journal lastpage51002
identifier eissn1528-8900
treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record