Show simple item record

contributor authorReddy, B. V. K.
contributor authorBarry, Matthew
contributor authorLi, John
contributor authorChyu, Minking K.
date accessioned2017-05-09T01:09:41Z
date available2017-05-09T01:09:41Z
date issued2014
identifier issn0022-1481
identifier otherht_136_10_101401.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155379
description abstractThe performance of خ  shaped conventional and composite thermoelectric devices (TEDs) applied to waste heat recovery by taking the Fourier heat conduction, Joule heating, and the Peltier and Thomson effects in TE materials is investigated using analytical solutions. The TE legs built with semiconductor materials bonded onto a highly conductive interconnector material in a segmented fashion is treated as the composite TED, whereas the legs merely made from semiconductors is treated as the conventional TED. The top and bottom surfaces of TEDs are subjected to convective heat transfer conditions while the remaining surfaces exposed to ambient are kept adiabatic. The effects of contact resistances, convective heat transfer coefficients, and TE leg heights L on TEDs' performance are studied. An increase in electrical and/or thermal contact resistance and a decrease in heat transfer coefficients are resulted in a decrease in power output P0 and conversion efficiency خ·. Depending on the contact resistances and convective heat transfer loads, the optimum L where a maximum Po occurs is obtained typically in the range of 1–4 mm. For TE leg size greater than optimum L and TED operating under higher convective heat transfer conditions, the composite design exhibited better power output and lower conversion efficiency compared to conventional design. The effects of interconnector lengths and crosssectional area on the composite TED's characteristics are also investigated. An increase in a length and a decrease in a crosssectional area of the interconnector decreases the composite TED's performance. However, based on the increase of the interconnector's electrical resistance in relation to the device's total internal resistance, the composite TED exhibited both negligible and significant change behavior in P0.
publisherThe American Society of Mechanical Engineers (ASME)
titleConvective Heat Transfer and Contact Resistances Effects on Performance of Conventional and Composite Thermoelectric Devices
typeJournal Paper
journal volume136
journal issue10
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4028021
journal fristpage101401
journal lastpage101401
identifier eissn1528-8943
treeJournal of Heat Transfer:;2014:;volume( 136 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record