Show simple item record

contributor authorMilewski, Jaros‚aw
contributor authorڑwirski, Konrad
date accessioned2017-05-09T01:08:59Z
date available2017-05-09T01:08:59Z
date issued2014
identifier issn2381-6872
identifier otherfc_011_02_021001.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155110
description abstractThe paper presents use of an artificial neural network (ANN) for predicting the thermalflow behavior of a solid oxide fuel cell with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure.
publisherThe American Society of Mechanical Engineers (ASME)
titleArtificial Neural Network Based Model for Calculating the Flow Composition Influence of Solid Oxide Fuel Cell
typeJournal Paper
journal volume11
journal issue2
journal titleJournal of Fuel Cell Science and Technology
identifier doi10.1115/1.4025922
journal fristpage21001
journal lastpage21001
identifier eissn2381-6910
treeJournal of Fuel Cell Science and Technology:;2014:;volume( 011 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record