Show simple item record

contributor authorBhatnagar, Tim
contributor authorLiu, Jie
contributor authorOxland, Thomas
date accessioned2017-05-09T01:05:37Z
date available2017-05-09T01:05:37Z
date issued2014
identifier issn0148-0731
identifier otherbio_136_09_095001.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154073
description abstractRodent models of acute spinal cord injury (SCI) are often used to investigate the effects of injury mechanism, injury speed, and cord displacement magnitude, on the ensuing cascade of biological damage in the cord. However, due to its small size, experimental observations have largely been limited to the gross response of the cord. To properly understand the relationship between mechanical stimulus and biological damage, more information is needed about how the constituent tissues of the cord (i.e., gray and white matter) respond to injurious stimuli. To address this limitation, we developed a novel magnetic resonance imaging (MRI)compatible test apparatus that can impose either a contusiontype or dislocationtype acute cervical SCI in a rodent model and facilitate MRimaging of the cervical spinal cord in a 7 T MR scanner. In this study, we present the experimental performance parameters of the MR rig. Utilizing cadaveric specimens and static radiographs, we report contusion magnitude accuracy that for a desired 1.8 mm injury, a nominal 1.78 mm injury (SD = 0.12 mm) was achieved. Highspeed video analysis was employed to determine the injury speeds for both mechanisms and were found to be 1147 mm/s (SD = 240 mm/s) and 184 mm/s (SD = 101 mm/s) for contusion and dislocation injuries, respectively. Furthermore, we present qualitative pilot data from a cadaveric trial, employing the MR rig, to show the expected results from future studies.
publisherThe American Society of Mechanical Engineers (ASME)
titleCharacterization of a Novel, Magnetic Resonance Imaging Compatible Rodent Model Spinal Cord Injury Device
typeJournal Paper
journal volume136
journal issue9
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4027670
journal fristpage95001
journal lastpage95001
identifier eissn1528-8951
treeJournal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record