Show simple item record

contributor authorKim, Yong
contributor authorHan, Je
date accessioned2017-05-09T01:04:01Z
date available2017-05-09T01:04:01Z
date issued2013
identifier issn1048-9002
identifier othervib_135_1_011006.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153541
description abstractFor the purpose of identifying the acoustic characteristics of honeycomb sandwich panels, finite element method (FEM), combined with boundary element method (BEM), has been widely used. However, the latter approach is not always applicable to high frequency analyses since it requires a large number of FEM/BEM meshes. In order to reduce computational resources and modeling times, a hybrid analytical/finite element method (HAFEM) is described that uses a finite element approximation in the thickness direction, while analytical solutions are assumed in the plane directions. Thus, it makes it possible to use a small number of finite elements, even for high frequency analyses. By using the HAFEM, the wave transmission, propagation, and radiation characteristics of the honeycomb sandwich panels are investigated. The proposed HAFEM procedure is validated by comparing the predicted transmission loss (TL) results to the measured ones. Through the use of the HAFEM model of a honeycomb sandwich panel, it is shown that the structural responses of the panel converge asymptotically to flexural waves in the low audible frequency region, core shear waves in the high audible to ultrasonic frequency region, and skin flexural waves in the high ultrasonic frequency region. Coincident frequencies occur at the transition region from the flexural to core shear wave behaviors. From the TL sensitivities of various panel design parameters, the most dominant design parameters contributing to the TL results are determined as a function of frequency. In order to improve the acoustic performance of the honeycomb sandwich panel while satisfying weight and strength requirements, a new double core honeycomb sandwich panel is designed to have the same mass per unit area as the baseline single core panel but have a larger equivalent flexural stiffness than that of the baseline panel.
publisherThe American Society of Mechanical Engineers (ASME)
titleIdentification of Acoustic Characteristics of Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method1
typeJournal Paper
journal volume135
journal issue1
journal titleJournal of Vibration and Acoustics
identifier doi10.1115/1.4007241
journal fristpage11006
journal lastpage11006
identifier eissn1528-8927
treeJournal of Vibration and Acoustics:;2013:;volume( 135 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record