Show simple item record

contributor authorLigrani, Phil
contributor authorSik Jin, Jae
date accessioned2017-05-09T01:03:42Z
date available2017-05-09T01:03:42Z
date issued2013
identifier issn0889-504X
identifier otherturb_135_4_041013.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153468
description abstractResults of second law analysis of experimentallymeasured aerodynamic losses are presented for a cambered vane with and without film cooling, including comparisons with similar results from a symmetric airfoil. Included are distributions of local entropy creation, as well as massaveraged magnitudes of global exergy destruction. The axial chord length of the cambered vane is 4.85 cm, the true chord length is 7.27 cm, and the effective pitch is 6.35 cm. Data are presented for three airfoil Mex distributions (including one wherein the flow is transonic), magnitudes of inlet turbulence intensity from 1.1% to 8.2%, and ks/cx surface roughness values of 0, 0.00108, and 0.00258. The associated second law aerodynamics losses are presented for two different measurement locations downstream of the vane trailing edge (one axial chord length and 0.25 axial chord length). The surface roughness, when present, simulates characteristics of the actual roughness which develops on operating turbine airfoils from a utility power engine, over long operating times, due to particulate deposition and to spallation of thermal barrier coatings. Quantitative surface roughness characteristics which are matched include equivalent sandgrain roughness size, as well as the irregularity, nonuniformity, and the threedimensional irregular arrangement of the roughness. Relative to a smooth, symmetric airfoil with no film cooling at low Mach number and low freestream turbulence intensity, overall, the largest increases in exergy destruction occur with increasing Mach number, and increasing surface roughness. Important variations are also observed as airfoil camber changes. Progressively smaller massaveraged exergy destruction increases are then observed with changes of freestream turbulence intensity, and different film cooling conditions. In addition, the dependences of overall exergy destruction magnitudes on mainstream turbulence intensity and freestream Mach number are vastly different as level of vane surface roughness changes. When film cooling is present, overall massaveraged exergy destruction magnitudes are significantly less than values associated with increased airfoil surface roughness for both the cambered vane and the symmetric airfoil. Dimensional exergy destruction values (associated with wake aerodynamic losses) for the symmetric airfoil with film cooling are then significantly higher than data from the cambered vane with film cooling, when compared at a particular blowing ratio.
publisherThe American Society of Mechanical Engineers (ASME)
titleSecond Law Analysis of Aerodynamic Losses: Results for a Cambered Vane With and Without Film Cooling
typeJournal Paper
journal volume135
journal issue4
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4007588
journal fristpage41013
journal lastpage41013
identifier eissn1528-8900
treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record