description abstract | This experimental study measured the detailed Nusselt numbers (Nu) distributions over two opposite leading and trailing walls of a rotating rectangular channel fitted with a diamondshaped pinfin array with radially outward flow for gas turbine rotor blade cooling applications. The combined and isolated effects of Reynolds (Re), rotation (Ro), and buoyancy (Bu) numbers on local and areaaveraged Nusselt numbers (Nu and Nuآ¯) were examined at the test conditions of 5000 ≤ Re ≤ 15,000, 0 ≤ Ro ≤ 0.6, and 0.0007 ≤ Bu ≤ 0.31. The present infrared thermography method enables the generation of fullfield Nu scans over the rotating end walls at the realistic engine Ro conditions as the first attempt to reveal the combined rotating buoyancy and Coriolis force effects on heat transfer properties. The selected heat transfer results demonstrate the Coriolis and rotatingbuoyancy effects on the heat transfer performances of this rotating channel. Acting by the combined Coriolis and rotating buoyancy effects on the areaaveraged heat transfer properties, the rotating leading and trailing areaaveraged Nusselt numbers are modified, respectively, to 0.82–1.52 and 1–1.89 times the static channel references. A set of physically consistent empirical Nuآ¯ correlations was generated to permit the assessments of individual and interdependent Re, Ro, and Bu effects on the areaaveraged heat transfer properties over leading and trailing end walls. | |