Show simple item record

contributor authorBrinkert, Nils
contributor authorSumser, Siegfried
contributor authorWeber, Siegfried
contributor authorFieweger, Klaus
contributor authorSchulz, Achmed
contributor authorBauer, Hans
date accessioned2017-05-09T01:03:37Z
date available2017-05-09T01:03:37Z
date issued2013
identifier issn0889-504X
identifier otherturb_135_2_021039.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153451
description abstractThe current study investigates the flow conditions of a twin scroll asymmetric turbine. This is motivated by the operating conditions of the turbine at a heavyduty reciprocating internal combustion engine with exhaust gas recirculation. The flow conditions of the turbine at the engine can be described best with the turbine scroll interaction map. Standard hot gas measurements of a turbocharger turbine are presented and discussed. Due to the strong interaction of the turbine scrolls, further hot gas measurements are performed at partial admission conditions. The turbine inlet conditions are analyzed experimentally, in order to characterize the turbine performance. The turbine scroll pressure ratio is varied, leading to unequal twin turbine admission conditions. The flow behavior is analyzed regarding its ability for further extrapolation. Beyond scroll pressure ratio variations, unequal temperature admission conditions were studied. A way of characterizing the representative turbine inlet temperature, regarding the reduced turbine speed, is presented. The different scroll parameter ratios are evaluated regarding their capability of describing flow similarity under different unequal turbine admission conditions. In this content, turbine scroll Mach number ratio, velocity ratio and mass flow ratio are assessed. Furthermore, a generic representation of the turbine flow conditions at the engine is presented, based on standard turbine performance maps.
publisherThe American Society of Mechanical Engineers (ASME)
titleUnderstanding the Twin Scroll Turbine: Flow Similarity
typeJournal Paper
journal volume135
journal issue2
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4006607
journal fristpage21039
journal lastpage21039
identifier eissn1528-8900
treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record