Show simple item record

contributor authorElias, John J.
contributor authorSaranathan, Archana
date accessioned2017-05-09T00:56:44Z
date available2017-05-09T00:56:44Z
date issued2013
identifier issn0148-0731
identifier otherbio_135_8_081011.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151077
description abstractThe current study was performed to evaluate the accuracy of computational assessment of the influence of the orientation of the patellar tendon on the patellofemoral pressure distribution. Computational models were created to represent eight knees previously tested at 40 deg, 60 deg, and 80 deg of flexion to evaluate the influence of hamstrings loading on the patellofemoral pressure distribution. Hamstrings loading increased the lateral and posterior orientation of the patellar tendon, with the change for each test determined from experimentally measured variations in tibiofemoral alignment. The patellar tendon and the cartilage on the femur and patella were represented with springs. After loading the quadriceps, the total potential energy was minimized to determine the force within the patellar tendon. The forces applied by the quadriceps and patellar tendon produced patellar translation and rotation. The deformation of each cartilage spring was determined from overlap of the cartilage surfaces on the femur and patella and related to force using linear elastic theory. The patella was iteratively adjusted until the extension moment, tilt moment, compression, and lateral force acting on the patella were in equilibrium. For the maximum pressure applied to lateral cartilage and the ratio of the lateral compression to the total compression, paired ttests were performed at each flexion angle to determine if the output varied significantly (p < 0.05) between the two loading conditions. For both the computational and experimental data, loading the hamstrings significantly increased the lateral force ratio and the maximum lateral pressure at multiple flexion angles. For the computational data, loading the hamstrings increased the average lateral force ratio and maximum lateral pressure by approximately 0.04 and 0.3 MPa, respectively, compared to experimental increases of 0.06 and 0.4 MPa, respectively. The computational modeling technique accurately characterized variations in the patellofemoral pressure distribution caused by altering the orientation of the patellar tendon.
publisherThe American Society of Mechanical Engineers (ASME)
titleDiscrete Element Analysis for Characterizing the Patellofemoral Pressure Distribution: Model Evaluation
typeJournal Paper
journal volume135
journal issue8
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4024287
journal fristpage81011
journal lastpage81011
identifier eissn1528-8951
treeJournal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record