Show simple item record

contributor authorFata, Bahar
contributor authorCarruthers, Christopher A.
contributor authorGibson, Gregory
contributor authorWatkins, Simon C.
contributor authorGottlieb, Danielle
contributor authorMayer, John E.
contributor authorSacks, Michael S.
date accessioned2017-05-09T00:56:32Z
date available2017-05-09T00:56:32Z
date issued2013
identifier issn0148-0731
identifier otherbio_135_2_021022.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150999
description abstractThe engineering foundation for novel approaches for the repair of congenital defects that involve the main pulmonary artery (PA) must rest on an understanding of changes in the structurefunction relationship that occur during postnatal maturation. In the present study, we quantified the postnatal growth patterns in structural and biomechanical behavior in the ovine PA in the juvenile and adult stages. The biaxial mechanical properties and collagen and elastin fiber architecture were studied in four regions of the PA wall, with the collagen recruitment of the medial region analyzed using a custom biaxial mechanicalmultiphoton microscopy system. Circumferential residual strain was also quantified at the sinotubular junction and bifurcation locations, which delimit the PA. The PA wall demonstrated significant mechanical anisotropy, except in the posterior region where it was nearly isotropic. Overall, we observed only moderate changes in regional mechanical properties with growth. We did observe that the medial and lateral locations experience a moderate increase in anisotropy. There was an average of about 24% circumferential residual stain present at the luminal surface in the juvenile stage that decreased to 16% in the adult stage with a significant decrease at the bifurcation, implying that the PA wall remodels toward the bifurcation with growth. There were no measurable changes in collagen and elastin content of the tunica media with growth. On average, the collagen fiber recruited more rapidly with strain in the adult compared to the juvenile. Interestingly, the PA thickness remained constant with growth. When this fact is combined with the observed stable overall mechanical behavior and increase in vessel diameter with growth, a simple Laplace Law wall stress estimate suggests an increase in effective PA wall stress with postnatal maturation. This observation is contrary to the accepted theory of maintenance of homeostatic stress levels in the regulation of vascular function and suggests alternative mechanisms regulate postnatal somatic growth. Understanding the underlying mechanisms, incorporating important structural features during growth, will help to improve our understanding of congenital defects of the PA and lay the basis for functional duplication in their repair and replacement.
publisherThe American Society of Mechanical Engineers (ASME)
titleRegional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth
typeJournal Paper
journal volume135
journal issue2
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4023389
journal fristpage21022
journal lastpage21022
identifier eissn1528-8951
treeJournal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record