Show simple item record

contributor authorSeth A. Lawson
contributor authorKaren A. Thole
date accessioned2017-05-09T00:55:24Z
date available2017-05-09T00:55:24Z
date copyrightJanuary, 2012
date issued2012
identifier issn0889-504X
identifier otherJOTUEI-28780#011003_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150560
description abstractDemand for clean energy has increased motivation to design gas turbines capable of burning alternative fuels such as coal derived synthesis gas (syngas). One challenge associated with burning coal derived syngas is that trace amounts of particulate matter in the fuel and air can deposit on turbine hardware reducing the effectiveness of film-cooling. For the current study, a method was developed to dynamically simulate multiphase particle deposition through injection of a low melting temperature wax. The method was developed so the effects of deposition on endwall film-cooling could be quantified using a large scale vane cascade in a low speed wind tunnel. A microcrystalline wax was injected into the mainstream flow using atomizing spray nozzles to simulate both solid and molten particulate matter in a turbine gas path. Infrared thermography was used to quantify cooling effectiveness with and without deposition at various locations on a film-cooled endwall. Measured results indicated reductions in adiabatic effectiveness by as much as 30% whereby the reduction was highly dependent on the location of the film-cooling holes relative to the vane.
publisherThe American Society of Mechanical Engineers (ASME)
titleSimulations of Multiphase Particle Deposition on Endwall Film-Cooling
typeJournal Paper
journal volume134
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4002962
journal fristpage11003
identifier eissn1528-8900
keywordsTemperature
keywordsCooling
keywordsParticulate matter
keywordsTurbines
keywordsMomentum
keywordsFlow (Dynamics) AND Coolants
treeJournal of Turbomachinery:;2012:;volume( 134 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record