Show simple item record

contributor authorT. S. Dhanasekaran
contributor authorTing Wang
date accessioned2017-05-09T00:52:32Z
date available2017-05-09T00:52:32Z
date copyrightJanuary, 2012
date issued2012
identifier issn0022-1481
identifier otherJHTRAO-27930#011501_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149561
description abstractFilm cooling techniques have been successfully applied to gas turbine blades to protect them from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory conditions to significantly augment adiabatic cooling effectiveness by up to 50%–800% in convective heat transfer and impingement cooling. The similar concept of injecting mist into air film cooling has not been proven in the laboratory, but computational simulations have been performed on stationary turbine blades. As a continuation of previous research, this paper extends the mist film cooling scheme to the rotating turbine blade. For the convenience of understanding the effect of rotation, the simulation is first conducted with a single pair of cooling holes located near the leading edge at either side of the blade. Then, a row of multiple-hole film cooling jets is put in place under both stationary and rotating conditions. Both the laboratory (baseline) and elevated gas turbine conditions are simulated and compared. Elevated conditions refer to a high temperature and pressure closer to actual gas turbine working conditions. The effects of various parameters including mist concentration, water droplet diameter, droplet wall boundary condition, blowing ratio, and rotational speed are investigated. The results showed that the effect of rotation on droplets under laboratory conditions is minimal. The computational fluid dynamics (CFD) model employed is the discrete phase model (DPM) including both wall film and droplet reflect conditions. The results showed that the droplet-wall interaction is stronger on the pressure side than on the suction side, resulting in a higher mist cooling enhancement on the pressure side. The average rates of mist cooling enhancement of about 15% and 35% were achieved under laboratory and elevated conditions, respectively. This translates to a significant blade surface temperature reduction of 100–125 K with 10% mist injection at elevated conditions.
publisherThe American Society of Mechanical Engineers (ASME)
titleSimulation of Mist Film Cooling on Rotating Gas Turbine Blades
typeJournal Paper
journal volume134
journal issue1
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4004480
journal fristpage11501
identifier eissn1528-8943
keywordsCooling
keywordsBlades
keywordsPressure AND Gas turbines
treeJournal of Heat Transfer:;2012:;volume( 134 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record