Show simple item record

contributor authorBrandon J. Tefft
contributor authorAdrian M. Kopacz
contributor authorShu Q. Liu
contributor authorWing Kam Liu
date accessioned2017-05-09T00:46:23Z
date available2017-05-09T00:46:23Z
date copyrightFebruary, 2011
date issued2011
identifier issn1949-2944
identifier otherJNEMAA-28051#011007_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147335
description abstractPolymeric vascular grafts hold great promise for vascular reconstruction, but the lack of endothelial cells renders these grafts susceptible to intimal hyperplasia and restenosis, precluding widespread clinical applications. The purpose of this study is to establish a stable endothelium on expanded polytetrafluoroethylene (ePTFE) membrane by small interfering RNA (siRNA)-induced suppression of the cell adhesion inhibitor SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were treated with scrambled siRNA as a control or SHP-1 specific siRNA. Treated cells were seeded onto fibronectin-coated ePTFE scaffolds and exposed to a physiological range of pulsatile fluid shear stresses for 1 h in a variable-width parallel plate flow chamber. Retention of cells was measured and compared between various shear stress levels and between groups treated with scrambled siRNA and SHP-1 specific siRNA. HUVECs seeded on ePTFE membrane exhibited shear stress-dependent retention. Exposure to physiological shear stress (10 dyn/cm2) induced a reduction in the retention of scrambled siRNA treated cells from 100% to 85% at 1 h. Increased shear stress (20 dyn/cm2) further reduced retention of scrambled siRNA treated cells to 55% at 1 h. SHP-1 knockdown mediated by siRNA enhanced endothelial cell retention from approximately 60% to 85% after 1 h of exposure to average shear stresses in the range of 15–30 dyn/cm2. This study demonstrates that siRNA-mediated gene silencing may be an effective strategy for improving the retention of endothelial cells within vascular grafts.
publisherThe American Society of Mechanical Engineers (ASME)
titleEnhancing Endothelial Cell Retention on ePTFE Constructs by siRNA-Mediated SHP-1 Gene Silencing
typeJournal Paper
journal volume2
journal issue1
journal titleJournal of Nanotechnology in Engineering and Medicine
identifier doi10.1115/1.4003273
journal fristpage11007
identifier eissn1949-2952
keywordsFluids
keywordsStress
keywordsShear (Mechanics)
keywordsEndothelial cells
keywordsMembranes
keywordsFlow (Dynamics) AND Physiology
treeJournal of Nanotechnology in Engineering and Medicine:;2011:;volume( 002 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record