Show simple item record

contributor authorNesrin Ozalp
contributor authorAnthony Toyama
contributor authorJayakrishna Devanuri
contributor authorReza Rowshan
contributor authorYasser Al-Hamidi
date accessioned2017-05-09T00:45:55Z
date available2017-05-09T00:45:55Z
date copyrightFebruary, 2011
date issued2011
identifier issn1050-0472
identifier otherJMDEDB-27939#021002_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147097
description abstractSolar reactors can convert intermittent solar radiation into storable chemical energy in the form of fuels that are transportable. In order to use solar energy as a source of high temperature process heat in a solar reactor, incident radiation needs to be concentrated over a small surface area, the inlet of which is called the aperture. The image of the incoming solar radiation over the aperture can be approximated by a Gaussian distribution where the solar radiation inside the reactor varies by the peak value and aperture size. Due to the transient nature of solar energy, there is a critical need for proper control to maximize system efficiency under field conditions. The objective of this paper is to present numerically proven advantages of having a camera-like variable aperture, one that is sensitive to natural variations in solar flux, and having the ability to shrink or enlarge accordingly in order to maintain quasi-constant radiation inside the reactor. Since the internal temperature has a major impact on reactant to product conversion efficiency, by maintaining the temperature constant, process efficiency is kept high. By maintaining the internal temperature despite transient operating conditions, the system can maintain peak performance through a wider insolation range than fixed aperture systems. Our numerical results from optical, thermodynamic, and flow dynamic simulations led us to develop a computational two dimensional heat transfer distribution model inside the reactor in order to validate our optical results. The combined simulation results show that correctly varying the aperture diameter with respect to transient incoming solar flux densities facilitates the maintenance of quasi-constant temperature distributions inside the reactor.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffect of Cameralike Aperture in Quest for Maintaining Quasi-Constant Radiation Inside a Solar Reactor
typeJournal Paper
journal volume133
journal issue2
journal titleJournal of Mechanical Design
identifier doi10.1115/1.4003179
journal fristpage21002
identifier eissn1528-9001
keywordsTemperature
keywordsRadiation (Physics)
keywordsSolar energy
keywordsEngineering simulation
keywordsCavities AND Steady state
treeJournal of Mechanical Design:;2011:;volume( 133 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record