Show simple item record

contributor authorDenis L. Bailey
contributor authorR. Michael Greiwe
contributor authorMarc T. Galloway
contributor authorCindi Gooch
contributor authorSafa T. Herfat
contributor authorJason T. Shearn
contributor authorDavid L. Butler
date accessioned2017-05-09T00:42:36Z
date available2017-05-09T00:42:36Z
date copyrightFebruary, 2011
date issued2011
identifier issn0148-0731
identifier otherJBENDY-27194#021010_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145490
description abstractActivities of daily living (ADLs) generate complex, multidirectional forces in the anterior cruciate ligament (ACL). While calibration problems preclude direct measurement in patients, ACL forces can conceivably be measured in animals after technical challenges are overcome. For example, motion and force sensors can be implanted in the animal but investigators must determine the extent to which these sensors and surgery affect normal gait. Our objectives in this study were to determine (1) if surgically implanting knee motion sensors and an ACL force sensor significantly alter normal ovine gait and (2) how increasing gait speed and grade on a treadmill affect ovine gait before and after surgery. Ten skeletally mature, female sheep were used to test four hypotheses: (1) surgical implantation of sensors would significantly decrease average and peak vertical ground reaction forces (VGRFs) in the operated limb, (2) surgical implantation would significantly decrease single limb stance duration for the operated limb, (3) increasing treadmill speed would increase VGRFs pre- and post operatively, and (4) increasing treadmill grade would increase the hind limb VGRFs pre- and post operatively. An instrumented treadmill with two force plates was used to record fore and hind limb VGRFs during four combinations of two speeds (1.0 m/s and 1.3 m/s) and two grades (0 deg and 6 deg). Sensor implantation decreased average and peak VGRFs less than 10% and 20%, respectively, across all combinations of speed and grade. Sensor implantation significantly decreased the single limb stance duration in the operated hind limb during inclined walking at 1.3 m/s but had no effect on single limb stance duration in the operated limb during other activities. Increasing treadmill speed increased hind limb peak (but not average) VGRFs before surgery and peak VGRF only in the unoperated hind limb during level walking after surgery. Increasing treadmill grade (at 1 m/s) significantly increased hind limb average and peak VGRFs before surgery but increasing treadmill grade post op did not significantly affect any response measure. Since VGRF values exceeded 80% of presurgery levels, we conclude that animal gait post op is near normal. Thus, we can assume normal gait when conducting experiments following sensor implantation. Ultimately, we seek to measure ACL forces for ADLs to provide design criteria and evaluation benchmarks for traditional and tissue engineered ACL repairs and reconstructions.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffect of Surgery to Implant Motion and Force Sensors on Vertical Ground Reaction Forces in the Ovine Model
typeJournal Paper
journal volume133
journal issue2
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4003322
journal fristpage21010
identifier eissn1528-8951
keywordsForce
keywordsMotion
keywordsSurgery
keywordsForce sensors AND Anterior cruciate ligament
treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record