Show simple item record

contributor authorVincent Mathieu
contributor authorKenji Fukui
contributor authorRomain Vayron
contributor authorEmmanuel Soffer
contributor authorGuillaume Haiat
contributor authorFani Anagnostou
contributor authorMami Matsukawa
contributor authorMasahiko Kawabe
date accessioned2017-05-09T00:42:36Z
date available2017-05-09T00:42:36Z
date copyrightFebruary, 2011
date issued2011
identifier issn0148-0731
identifier otherJBENDY-27194#021006_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145485
description abstractThe evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti–6Al–4V implants were placed in vivo at a distance of 200 μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200 μm×4.4 mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190 μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10 μm diameter. The ROIs were located in newly formed bone tissue (within the 200 μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10−3 m/s in newly formed bone tissue and 5.31×10−3 m/s in mature bone. Analysis of variance (p=2.42×10−4) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.
publisherThe American Society of Mechanical Engineers (ASME)
titleMicro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant
typeJournal Paper
journal volume133
journal issue2
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4003131
journal fristpage21006
identifier eissn1528-8951
keywordsMeasurement
keywordsRadiation scattering
keywordsElectromagnetic scattering
keywordsBone AND Biomechanics
treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record