Show simple item record

contributor authorGuangyu Ji
contributor authorChengcheng Zhu
contributor authorZhongzhao Teng
contributor authorUmar Sadat
contributor authorVictoria E. Young
contributor authorMartin J. Graves
contributor authorJonathan H. Gillard
date accessioned2017-05-09T00:42:35Z
date available2017-05-09T00:42:35Z
date copyrightMarch, 2011
date issued2011
identifier issn0148-0731
identifier otherJBENDY-27200#034501_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145477
description abstractHigh mechanical stress condition over the fibrous cap (FC) has been widely accepted as a contributor to plaque rupture. The relationships between the stress, lumen curvature, and FC thickness have not been explored in detail. In this study, we investigate lumen irregularity-dependent relationships between mechanical stress conditions, local FC thickness (LTFC), and lumen curvature (LClumen). Magnetic resonance imaging slices of carotid plaque from 100 patients with delineated atherosclerotic components were used. Two-dimensional structure-only finite element simulations were performed for the mechanical analysis, and maximum principal stress (stress-P1) at all integral nodes along the lumen was obtained. LTFC and LClumen were computed using the segmented contour. The lumen irregularity (L-δir) was defined as the difference between the largest and the smallest lumen curvature. The results indicated that the relationship between stress-P1, LTFC, and LClumen is largely dependent on L-δir. When L-δir≥1.31 (irregular lumen), stress-P1 strongly correlated with lumen curvature and had a weak/no correlation with local FC thickness, and in 73.4% of magnetic resonance (MR) slices, the critical stress (maximum of stress-P1 over the diseased region) was found at the site where the lumen curvature was large. When L-δir≤0.28 (relatively round lumen), stress-P1 showed a strong correlation with local FC thickness but weak/no correlation with lumen curvature, and in 71.7% of MR slices, the critical stress was located at the site of minimum FC thickness. Using lumen irregularity as a method of identifying vulnerable plaque sites by referring to the lumen shape is a novel and simple method, which can be used for mechanics-based plaque vulnerability assessment.
publisherThe American Society of Mechanical Engineers (ASME)
titleLumen Irregularity Dominates the Relationship Between Mechanical Stress Condition, Fibrous-Cap Thickness, and Lumen Curvature in Carotid Atherosclerotic Plaque
typeJournal Paper
journal volume133
journal issue3
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4003439
journal fristpage34501
identifier eissn1528-8951
keywordsStress
keywordsThickness
keywordsAtherosclerosis
keywordsMagnetic resonance imaging
keywordsFinite element analysis
keywordsRupture AND Shapes
treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record