Show simple item record

contributor authorJoão S. Soares
contributor authorJames E. Moore
contributor authorKumbakonam R. Rajagopal
date accessioned2017-05-09T00:39:57Z
date available2017-05-09T00:39:57Z
date copyrightDecember, 2010
date issued2010
identifier issn1932-6181
identifier otherJMDOA4-28014#041007_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144376
description abstractThe use of biodegradable polymers in biomedical applications has been successful in nonload bearing applications, such as biodegradable implants for local drug delivery, and in simple load bearing situations such as surgical sutures and orthopedic fixation screws. The desire to incorporate these materials in more complex load bearing situations, such as tissue engineering scaffolds and endovascular or urethral stents, is strong, but the lack of constitutive models describing the evolution of biodegradable polymers over the course of degradation has severely hampered the rational design process for these more complex biodegradable medical applications. With the objective of predicting biodegradable stent behavior, we incorporated constitutive models of biodegradable polymeric materials in a computational setting and the mechanical response of three different stent designs were analyzed as degradation progressed. A thermodynamically consistent constitutive model for materials undergoing deformation-induced degradation was applied to a commonly employed biodegradable polymer system, poly(L-lactic acid), and its specific form was determined by corroboration against experimental data. Depreciation of mechanical properties due to degradation confers time-dependent characteristics to the response of the biodegradable material: the deformation imparted by a constant load increases over time, i.e. the body creeps, and the stress necessary to keep a fixed deformation decreases, i.e. the body relaxes. Biodegradable stents, when subjected to constant pressure in its exterior, deflect inwards and ultimately fail as the structure loses its mechanical integrity. The complex geometry of endovascular stents and their physiological loading conditions lead to inhomogeneous deformations, and consequently, inhomogeneous degradation ensues. Degradation is mostly confined to the bends of the stent rings and junction points, which are the locations that carry most of the deformation, whereas mostly undeformed connector bars remain less degraded. If failure occurs, it will occur most likely at those sensitive locations and large, nondegraded pieces can provoke severe embolic problems. Highly nonuniform degradation indicates that some stent designs are at higher risk for complications. Deformation patterns of stents made of a material that loses its integrity are different than those of permanent stents. Blind adaptation of permanent stent design concepts is ill-suited for biodegradable stent design. The time-dependent aspect of the implant not only must be taken into account but should also be used to interact with the body’s reaction and to enhance healing.
publisherThe American Society of Mechanical Engineers (ASME)
titleModeling of Deformation-Accelerated Breakdown of Polylactic Acid Biodegradable Stents
typeJournal Paper
journal volume4
journal issue4
journal titleJournal of Medical Devices
identifier doi10.1115/1.4002759
journal fristpage41007
identifier eissn1932-619X
keywordsDeformation
keywordsstents
keywordsPolymers
keywordsStress AND Design
treeJournal of Medical Devices:;2010:;volume( 004 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record