Show simple item record

contributor authorJay Patel
contributor authorMatthew I. Campbell
date accessioned2017-05-09T00:39:38Z
date available2017-05-09T00:39:38Z
date copyrightMay, 2010
date issued2010
identifier issn1050-0472
identifier otherJMDEDB-27923#051001_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144218
description abstractThis paper describes an approach to automate the design for sheet metal parts that satisfy multiple objective functions such as material cost and manufacturability. Unlike commercial software tools such as PRO/SHEETMETAL , which aids the user in finalizing and determining the sequence of manufacturing operations for a specified component, our approach starts with spatial constraints in order to create the component geometries and helps the designer design. While there is an infinite set of parts that can feasibly be generated with sheet metal, it is difficult to define this space systematically. To solve this problem, we have created 108 design rules that have been developed for five basic sheet metal operations: slitting, notching, shearing, bending, and punching. A recipe of the operations for a final optimal design is then presented to the manufacturing engineers thus saving them time and cost. The technique revealed in this paper represents candidate solutions as a graph of nodes and arcs where each node is a rectangular patch of sheet metal, and modifications are progressively made to the sheet to maintain the parts manufacturability. This paper also discusses a new topological optimization technique to solve graph-based engineering design problems by decoupling parameters and topology changes. This paper presents topological and parametric tune and prune ((TP)2) as a topology optimization method that has been developed specifically for domains representable by a graph grammar schema. The method is stochastic and incorporates distinct phases for modifying the topologies and modifying parameters stored within topologies. Thus far, with abovementioned sheet metal problem, (TP)2 had proven better than genetic algorithm in terms of the quality of solutions and time taken to acquire them.
publisherThe American Society of Mechanical Engineers (ASME)
titleAn Approach to Automate and Optimize Concept Generation of Sheet Metal Parts by Topological and Parametric Decoupling
typeJournal Paper
journal volume132
journal issue5
journal titleJournal of Mechanical Design
identifier doi10.1115/1.4001409
journal fristpage51001
identifier eissn1528-9001
keywordsSheet metal
keywordsDesign
keywordsProject tasks
keywordsTree (Data structure)
keywordsGenetic algorithms AND Surgery
treeJournal of Mechanical Design:;2010:;volume( 132 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record