Show simple item record

contributor authorB. Borgmeyer
contributor authorD. Jacobson
contributor authorD. Hussey
contributor authorC. Wilson
contributor authorR. A. Winholtz
contributor authorH. B. Ma
date accessioned2017-05-09T00:38:56Z
date available2017-05-09T00:38:56Z
date copyrightJune, 2010
date issued2010
identifier issn0022-1481
identifier otherJHTRAO-27889#061502_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/143840
description abstractAn experimental investigation into the parameters affecting heat transport in two three-dimensional oscillating heat pipes (OHPs) was implemented. A three-dimensional OHP is one in which the center axis of the circular channels containing the internal working fluid do not lie in the same plane. This novel design allows for more turns in a more compact size. The OHPs in the current investigation is made of copper tubings (3.175 mm outside diameter, 1.65 mm inside diameter) wrapped in a three-dimensional fashion around two copper spreaders that act as the evaporator and condenser. The two OHPs have 10 and 20 turns in both the evaporator and condenser. The 20-turn OHP was filled to 50% of the total volume with a high performance liquid chromatography grade water. Transient and steady state temperature data were recorded at different locations for various parameters. Parameters such as heat input, operating temperature, and filling ratio were varied to determine its effect on the overall heat transport. Neutron radiography was simultaneously implemented to create images of the internal working fluid flow at a rate of 30 frames per second. Results show the average temperature drop from the evaporator to condenser decreases at higher heat inputs due to an increase in temperature throughout the condenser region due to greater oscillations. These large oscillations were visually observed using neutron radiography. As the operating temperature is increased, the thermal resistance is reduced. A decrease in filling ratio tends to create more steady fluid motion; however, the heat transfer performance is reduced.
publisherThe American Society of Mechanical Engineers (ASME)
titleHeat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes
typeJournal Paper
journal volume132
journal issue6
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4000750
journal fristpage61502
identifier eissn1528-8943
keywordsFluid dynamics
keywordsHeat
keywordsTemperature
keywordsHeat pipes
keywordsCondensers (steam plant)
keywordsOperating temperature
keywordsNeutron radiography
keywordsFluids
keywordsMotion
keywordsHeat transfer
keywordsOscillations
keywordsDrops AND Channels (Hydraulic engineering)
treeJournal of Heat Transfer:;2010:;volume( 132 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record