Show simple item record

contributor authorS. K. Krishnababu
contributor authorP. J. Newton
contributor authorW. N. Dawes
contributor authorG. D. Lock
contributor authorH. P. Hodson
contributor authorJ. Hannis
contributor authorC. Whitney
date accessioned2017-05-09T00:35:53Z
date available2017-05-09T00:35:53Z
date copyrightJanuary, 2009
date issued2009
identifier issn0889-504X
identifier otherJOTUEI-28752#011006_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/142205
description abstractA numerical study has been performed to investigate the effect of tip geometry on the tip leakage flow and heat transfer characteristics in unshrouded axial flow turbines. Base line flat tip geometry and squealer type geometries, namely, double squealer or cavity and suction-side squealer, were considered. The performances of the squealer geometries, in terms of the leakage mass flow and heat transfer to the tip, were compared with the flat tip at two different tip clearance gaps. The computations were performed using a single blade with periodic boundary conditions imposed along the boundaries in the pitchwise direction. Turbulence was modeled using three different models, namely, standard k-ε, low Re k-ω, and shear stress transport (SST) k-ω, in order to assess the capability of the models in correctly predicting the blade heat transfer. The heat transfer and static pressure distributions obtained using the SST k-ω model were found to be in close agreement with the experimental data. It was observed that compared to the other two geometries considered, the cavity tip is advantageous both from the aerodynamic and from the heat transfer perspectives by providing a decrease in the amount of leakage, and hence losses, and average heat transfer to the tip. In general, for a given geometry, the leakage mass flow and the heat transfer to the tip increased with increase in tip clearance gap. Part II of this paper examines the effect of relative casing motion on the flow and heat transfer characteristics of tip leakage flow. In Part III of this paper the effect of coolant injection on the flow and heat transfer characteristics of tip leakage flow is presented.
publisherThe American Society of Mechanical Engineers (ASME)
titleAerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
typeJournal Paper
journal volume131
journal issue1
journal titleJournal of Turbomachinery
identifier doi10.1115/1.2950068
journal fristpage11006
identifier eissn1528-8900
keywordsPressure
keywordsFlow (Dynamics)
keywordsHeat transfer
keywordsSuction
keywordsClearances (Engineering)
keywordsGeometry
keywordsLeakage flows
keywordsLeakage
keywordsBlades
keywordsCavities
keywordsTurbines
keywordsAxial flow
keywordsHeat transfer coefficients AND Computation
treeJournal of Turbomachinery:;2009:;volume( 131 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record