Show simple item record

contributor authorZhi-Min Li
contributor authorZhong-Qin Lin
contributor authorGuan-Long Chen
date accessioned2017-05-09T00:34:59Z
date available2017-05-09T00:34:59Z
date copyrightDecember, 2009
date issued2009
identifier issn0094-9930
identifier otherJPVTAS-28522#061206_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141729
description abstractNonlinear buckling and postbuckling behavior for a 3D braided composite cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure, or external liquid pressure in thermal environments have been presented in this paper. Based on a new micromacromechanical model, a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross section of the cylindrical shell. The material properties of the epoxy are expressed as a linear function of temperature. The governing equations are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect braided composite cylindrical shells with different values of geometric parameter and of fiber volume fraction in different cases of thermal environmental conditions. The results show that the shell has lower buckling pressures and postbuckling paths when the temperature-dependent properties are taken into account. The results reveal that the temperature changes, the fiber volume fraction, and the shell geometric parameter have a significant effect on the buckling pressure and postbuckling behavior of braided composite cylindrical shells.
publisherThe American Society of Mechanical Engineers (ASME)
titleNonlinear Buckling and Postbuckling Behavior of 3D Braided Composite Cylindrical Shells Under External Pressure Loads in Thermal Environments
typeJournal Paper
journal volume131
journal issue6
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.4000362
journal fristpage61206
identifier eissn1528-8978
treeJournal of Pressure Vessel Technology:;2009:;volume( 131 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record