Show simple item record

contributor authorJ. Bryndza
contributor authorA. Weiser
contributor authorM. Paliwal
date accessioned2017-05-09T00:34:45Z
date available2017-05-09T00:34:45Z
date copyrightJune, 2009
date issued2009
identifier issn1932-6181
identifier otherJMDOA4-28002#027532_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/141608
description abstractArthritis, degenerative disc disease, spinal stenosis, and other ailments lead to the deterioration of the facet joints of the spine, causing pain and immobility in patients. Dynamic stabilization and arthroplasty of the facet joints have advantages over traditional fusion methods by eliminating pain while maintaining normal mobility and function. In the present work, a novel dynamic stabilization spine implant design was developed using computational analysis, and the final design was fabricated and mechanically tested. A model of a fused L4–L5 Functional Spinal Unit (FSU) was developed using Pro/Engineer (PTC Corporation, Needham, MA). The model was imported into commercial finite element analysis software Ansys (Ansys Inc., Canonsburg, PA), and meshed with the material properties of bone, intervertebral disc, and titanium alloy. Physiological loads (600N axial load, 10 N-m moment) were applied to the model construct following the protocol developed by others. The model was subjected to flexion/extension, axial rotation, and lateral bending, and was validated with the results reported by Kim et al. The validated FSU was used as a base to design and evaluate novel spine implant designs, using finite element anlysis. A comparison of the flexion-extension curve of six designs and an intact spine was carried out. Range of motion of the new designs showed up to 4 degrees in flexion and extension, compared to less than one degree flexion/extension in a fused spine. The design that reproduced normal range of motion best was optimized, fabricated and prepared for mechanical testing. The finalized dynamic stabilization design with spring insert was implanted into a L4-L5 FSU sawbone (Pacific Research Laboratories, Vashon, WA) using Stryker Xia pedicle screws. The construct was potted using PMMA, and was subjected to flexion/extension, axial rotation, and lateral bending loads using MTS mechanical testing machine. The stiffness of the design was assessed and compared with computational analysis results.
publisherThe American Society of Mechanical Engineers (ASME)
titleDesign of a Dynamic Stabilization Spine Implant
typeJournal Paper
journal volume3
journal issue2
journal titleJournal of Medical Devices
identifier doi10.1115/1.3147482
journal fristpage27532
identifier eissn1932-619X
treeJournal of Medical Devices:;2009:;volume( 003 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record