Show simple item record

contributor authorXinjiang Shen
contributor authorDavid B. Bogy
date accessioned2017-05-09T00:30:43Z
date available2017-05-09T00:30:43Z
date copyrightJanuary, 2008
date issued2008
identifier issn0742-4787
identifier otherJOTRE9-28756#011015_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139444
description abstractParticles in the head disk interface may cause large contact forces acting on the slider as well as thermal asperities in the read/write signal. This is especially true for the close spacing required for 1Tbit∕in.2. In this paper, a three-body contact model is employed to study the effects of a particle entrapped between a slider and a disk. A criterion for determining a particle’s movement pattern is proposed. The study of particles in the head disk interface shows that large particles are likely to slide between the slider and disk interface, and the particles going through the trailing pad of an air bearing slider cause severe contact forces on the slider and generate large heat sources. The frictional heating study shows that the temperature around the magnetoresistive head increases to about 5°C for a single 200nm particle passing through the trailing pad of the slider. The effects of the particle size, disk material, and friction coefficient are also studied. It is found that the disk and slider materials and the frictional coefficient between the materials largely affect the contact force acting on the slider by an entrapped particle as well as the temperature rise at its contact region. It is also found that the friction coefficient largely affects a particle’s movement pattern in the head disk interface.
publisherThe American Society of Mechanical Engineers (ASME)
titleContact Force and Frictional Heating due to “Large” Particles in the Head Disk Interface
typeJournal Paper
journal volume130
journal issue1
journal titleJournal of Tribology
identifier doi10.1115/1.2805438
journal fristpage11015
identifier eissn1528-8897
keywordsParticulate matter
keywordsBearings
keywordsDisks
keywordsHeating
keywordsForce
keywordsTemperature AND Friction
treeJournal of Tribology:;2008:;volume( 130 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record