Show simple item record

contributor authorC. Zhang
contributor authorM. J. Pettigrew
contributor authorN. W. Mureithi
date accessioned2017-05-09T00:30:21Z
date available2017-05-09T00:30:21Z
date copyrightFebruary, 2008
date issued2008
identifier issn0094-9930
identifier otherJPVTAS-28489#011301_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139239
description abstractTwo-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Some of this work has already been done. The distributions of both void fraction and bubble velocity in rotated-triangular tube bundles were obtained. Somewhat unexpected but significant quasiperiodic forces in both the drag and lift directions were measured. The present work aims at understanding the nature of such unexpected drag and lift quasiperiodic forces. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. Fiber-optic probes were developed to measure local void fraction. Both the dynamic lift and drag forces were measured with a strain gage instrumented cylinder. The investigation showed that the quasiperiodic drag and lift forces are generated by different mechanisms that have not been previously observed. The quasiperiodic drag forces appear related to the momentum flux fluctuations in the main flow path between the cylinders. The quasiperiodic lift forces, on the other hand, are mostly correlated to oscillations in the wake of the cylinders. The quasiperiodic lift forces are related to local void fraction measurements in the unsteady wake area between upstream and downstream cylinders. The quasiperiodic drag forces correlate well with similar measurements in the main flow stream between cylinders.
publisherThe American Society of Mechanical Engineers (ASME)
titleCorrelation Between Vibration Excitation Forces and the Dynamic Characteristics of Two-Phase Cross Flow in a Rotated-Triangular Tube Bundle
typeJournal Paper
journal volume130
journal issue1
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.2826381
journal fristpage11301
identifier eissn1528-8978
treeJournal of Pressure Vessel Technology:;2008:;volume( 130 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record