Show simple item record

contributor authorNorman Jones
contributor authorR. S. Birch
date accessioned2017-05-09T00:30:15Z
date available2017-05-09T00:30:15Z
date copyrightAugust, 2008
date issued2008
identifier issn0094-9930
identifier otherJPVTAS-28496#031207_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/139182
description abstractExperimental results are reported for the perforation of geometrically similar fully clamped circular and square mild steel plates struck transversely by cylindrical projectiles having blunt, conical, and hemispherical noses. The striking masses are much heavier than the corresponding plate mass and travel with initial impact velocities up to about 12m∕s. The blunt projectiles perforate the plating easiest, while the hemispherical-nosed ones require the greatest energy. The perforation energy of a conical-nosed projectile is somewhat less than that for a hemispherical-nosed one. The data are used to explore the validity of the geometrically similar scaling laws over a geometric scale range of 4. The experimental results are compared to the empirical equations for the impact perforation of plates and with theoretical rigid-plastic predictions for the large ductile deformation behavior of those test specimens, which did not suffer cracking or perforation. The experimental results satisfy the requirements of geometrically similar scaling and some simple equations are presented, which are useful for design purposes.
publisherThe American Society of Mechanical Engineers (ASME)
titleOn the Scaling of Low-Velocity Perforation of Mild Steel Plates
typeJournal Paper
journal volume130
journal issue3
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.2937769
journal fristpage31207
identifier eissn1528-8978
treeJournal of Pressure Vessel Technology:;2008:;volume( 130 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record