contributor author | H. B. Ma | |
contributor author | B. Borgmeyer | |
contributor author | P. Cheng | |
contributor author | Y. Zhang | |
date accessioned | 2017-05-09T00:28:59Z | |
date available | 2017-05-09T00:28:59Z | |
date copyright | August, 2008 | |
date issued | 2008 | |
identifier issn | 0022-1481 | |
identifier other | JHTRAO-27841#081501_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/138496 | |
description abstract | A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the vapor bubble as the gas spring for the oscillating motions including effects of operating temperature, nonlinear vapor bulk modulus, and temperature difference between the evaporator and the condenser. Combining the oscillating motion predicted by the model, a mathematical model predicting the temperature difference between the evaporator and the condenser is developed including the effects of the forced convection heat transfer due to the oscillating motion, the confined evaporating heat transfer in the evaporating section, and the thin film condensation in the condensing section. In order to verify the mathematical model, an experimental investigation was conducted on a copper oscillating heat pipe with eight turns. Experimental results indicate that there exists an onset power input for the excitation of oscillating motions in an oscillating heat pipe, i.e., when the input power or the temperature difference from the evaporating section to the condensing section was higher than this onset value the oscillating motion started, resulting in an enhancement of the heat transfer in the oscillating heat pipe. Results of the combined theoretical and experimental investigation will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Heat Transport Capability in an Oscillating Heat Pipe | |
type | Journal Paper | |
journal volume | 130 | |
journal issue | 8 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.2909081 | |
journal fristpage | 81501 | |
identifier eissn | 1528-8943 | |
keywords | Heat transfer | |
keywords | Vapors | |
keywords | Motion | |
keywords | Evaporation | |
keywords | Forced convection | |
keywords | Heat pipes | |
keywords | Condensers (steam plant) | |
keywords | Heat | |
keywords | Temperature | |
keywords | Operating temperature | |
keywords | Bubbles | |
keywords | Thin films AND Condensation | |
tree | Journal of Heat Transfer:;2008:;volume( 130 ):;issue: 008 | |
contenttype | Fulltext | |