contributor author | Olivier A. Bauchau | |
contributor author | Jielong Wang | |
date accessioned | 2017-05-09T00:27:12Z | |
date available | 2017-05-09T00:27:12Z | |
date copyright | January, 2008 | |
date issued | 2008 | |
identifier issn | 1555-1415 | |
identifier other | JCNDDM-25643#011001_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/137573 | |
description abstract | Linearized stability analysis methodologies that are applicable to large scale, multiphysics problems are presented in this paper. Two classes of closely related algorithms based on a partial Floquet and on an autoregressive approach, respectively, are presented in common framework that underlines their similarity and their relationship to other methods. The robustness of the proposed approach is improved by using optimized signals that are derived from the proper orthogonal modes of the system. Finally, a signal synthesis procedure based on the identified frequencies and damping rates is shown to be an important tool for assessing the accuracy of the identified parameters; furthermore, it provides a means of resolving the frequency indeterminacy associated with the eigenvalues of the transition matrix for periodic systems. The proposed approaches are computationally inexpensive and consist of purely post processing steps that can be used with any multiphysics computational tool or with experimental data. Unlike classical stability analysis methodologies, it does not require the linearization of the equations of motion of the system. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Efficient and Robust Approaches to the Stability Analysis of Large Multibody Systems | |
type | Journal Paper | |
journal volume | 3 | |
journal issue | 1 | |
journal title | Journal of Computational and Nonlinear Dynamics | |
identifier doi | 10.1115/1.2397690 | |
journal fristpage | 11001 | |
identifier eissn | 1555-1423 | |
keywords | Stability | |
keywords | Signals | |
keywords | Damping AND Eigenvalues | |
tree | Journal of Computational and Nonlinear Dynamics:;2008:;volume( 003 ):;issue: 001 | |
contenttype | Fulltext | |