description abstract | This paper is devoted to mathematical models of problems of nonlinear vibrations of viscoelastic, orthotropic, and isotropic cylindrical panels. The models are based on Kirchhoff-Love hypothesis and Timoshenko generalized theory (including shear deformation and rotatory inertia) in a geometrically nonlinear statement. A choice of the relaxation kernel with three rheological parameters is justified. A numerical method based on the use of quadrature formulas for solving problems in viscoelastic systems with weakly singular kernels of relaxation is proposed. With the help of the Bubnov-Galerkin method in combination with a numerical method, the problems in nonlinear vibrations of viscoelastic orthotropic and isotropic cylindrical panels are solved using the Kirchhoff-Love and Timoshenko hypothesis. Comparisons of the results obtained by these theories, with and without taking elastic waves propagation into account, are presented. In all problems, the convergence of Bubnov-Galerkin’s method has been investigated. The influences of the viscoelastic and anisotropic properties of a material, on the process of vibration, are discussed in this work. | |