Show simple item record

contributor authorAlexander Bardetsky
contributor authorHelmi Attia
contributor authorMohamed Elbestawi
date accessioned2017-05-09T00:26:00Z
date available2017-05-09T00:26:00Z
date copyrightJanuary, 2007
date issued2007
identifier issn0742-4787
identifier otherJOTRE9-28746#23_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136955
description abstractThe utilization of cast aluminum alloys in automotive industry continues to rise because of consumer demand for a future generation of vehicles that will offer excellent fuel efficiency and emissions reduction, without compromising safety, performance, or comfort. Unlike wrought aluminum alloys, the cutting speed for cast aluminum alloys is considerably restricted due to the detrimental effect of the alloy’s silicon constituencies on tool life. In the present study, a new wear model is developed for tool-life management and enhancement, in a high-speed machining environment. The fracture-mechanics-based model requires normal and tangential stresses, acting on the flank of the cutting tool, as input data. Analysis of the subsurface crack propagation in the cobalt binder of cemented carbide cutting tool material is performed using a finite element (FE) model of the tool-workpiece sliding contact. The real microstructure of cemented carbide is incorporated into the FE model, and elastic-plastic properties of cobalt, defined by continuum theory of crystal plasticity are introduced. The estimation of the crack propagation rate is then used to predict the wear rate of the cutting tool. The model allows the microstructural characteristics of the cutting tool and workpiece material, as well as the tool’s loading conditions to be taken into consideration. Analysis of the results indicates that the interaction between the alloy’s hard silicon particles and the surface of the cutting tool is most detrimental to tool life. The fatigue wear of the cutting tool is shown to be directly proportional to the silicon content of the alloy, silicon grain size, and to the tool’s loading conditions.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Fracture Mechanics Approach to the Prediction of Tool Wear in Dry High-Speed Machining of Aluminum Cast Alloys—Part 1: Model Development
typeJournal Paper
journal volume129
journal issue1
journal titleJournal of Tribology
identifier doi10.1115/1.2390718
journal fristpage23
journal lastpage30
identifier eissn1528-8897
keywordsCobalt
keywordsMachining
keywordsAlloys
keywordsParticulate matter
keywordsCutting tools
keywordsFracture (Materials)
keywordsCrack propagation
keywordsWear
keywordsSilicon
keywordsBinders (Materials)
keywordsStress
keywordsAluminum
keywordsCutting
keywordsFinite element model AND Fracture mechanics
treeJournal of Tribology:;2007:;volume( 129 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record